2018-2019学年度第一学期福建省福州市八县(市)一中期末联考高中二年数学(文)科试卷(解析版)
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
共22道小题,约6060字。
2018-2019学年度第一学期八县(市)一中期末联考高中二年数学(文)科试卷
考试日期:1月23日完卷时间:120分钟满分:150分
第一部分选择题
一、选择题(本大题共12小题,每小题5分,共60分)
1.若命题p为:为( )
A.
B.
C.
D.
【答案】C
【解析】
【分析】
根据全称命题的否定为特称命题即可得到结果.
【详解】根据的构成方法得,为.故选C.
【点睛】全称命题的一般形式是:,,其否定为.存在性命题的一般形式是,,其否定为.
2.已知抛物线,则它的焦点到准线的距离为().
A. 4 B. 8 C. 16 D. 2
【答案】A
【解析】
【分析】
由抛物线的标准方程利用抛物线的简单性质可求得答案.
【详解】解:∵y2=2px=8x,
∴p=4,
∴抛物线y2=8x的焦点到准线的距离是4.
故选:A.
【点睛】本题考查抛物线的标准方程与抛物线的简单性质,属于基础题.
3.曲线在处的切线与坐标轴所围成三角形的面积为().
A. 1 B. C. D.
【答案】B
【解析】
【分析】
要求切线与坐标轴所围成的三角形的面积,只须求出切线在坐标轴上的截距即可,故先利用导数求出在x=0处的导函数值,再结合导数的几何意义即可求出切线的斜率.最后求出切线的方程,从而问题解决.
【详解】解:依题意得y′=ex,
因此曲线y=ex在点(0,1)处的切线的斜率等于1,
相应的切线方程是y=x+1,
当x=0时,y=1;
即y=0时,x=﹣1,
即由切线与坐标轴所围成的三角形的面积为:
S1×1.
故选:B.
【点睛】本题主要考查直线的方程、三角形的面积、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.
4.已知双曲线的左焦点为,则().
A. 9 B. 3 C. 16 D. 4
【答案】D
【解析】
【分析】
利用双曲线基本量满足勾股定理即可得到结果.
【详解】解:∵双曲线的左焦点为F1(﹣5,0),
∴25﹣m2=9,
∵m>0,
∴m=4,
故选:D.
【点睛】本题考查双曲线的简单几何性质,考查计算能力,属于基础题.
5.动点在圆上移动,过点作轴的垂线段,为垂足,则线段中点的轨迹方程是().
A. B. C. D.
【答案】B
【解析】
【分析】
设出M(x0,y0),P(x,y),D(x0,0),由中点坐标公式把M的坐标用P的坐标表示,代入圆的方程得答案.
【详解】解:设线段中点为P
设M(x0,y0),D(x0,0),
∵P是的中点,
∴,
又M在圆上,
∴x02+y02=25,即x2+4y2=25, .
∴线段的中点P的轨迹方程是: .
故选:B.
【点睛】本题考查了轨迹方程的求法,考查了代入法求曲线的轨迹方程,是中档题.
6.已知数列的前项和为,且,则().
A. B. C. D.
【答案】A
【解析】
【分析】
先根据a1=S1,=Sn﹣Sn﹣1(n≥2)求出数列的通项公式,再将n=5代入可求出所求.
【详解】当n=1时,a1=S1=2a1+1,∴a1=1.
当n>1时,Sn=,∴Sn﹣1=2an﹣1+1,
∴Sn﹣Sn﹣1=2an﹣2an﹣1,
∴an=2an﹣2an﹣1,
∴an=2an﹣1,
∴2,
∴{an}是首项为1,公比为2的等比数列,∴an=-2n﹣1,n∈N*.
∴a5=-25﹣1=-16.
故选:A.
【点睛】本题主要考查数列通项与前项和之间的关系以及公式的应用,属于中档题.已知求的一般步骤:(1)当时,由求的值;(2)当时,由,求得的表达式;(3)检验的值是否满足(2)中的表达式,若不满足则分段表示;(4)写出的完整表达式.
7.已知定义在上的函数,其导函数的大致图像如图所示,则下列叙述正确的是().
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源