《余角和补角》教案5
- 资源简介:
约2000字。
4.3.3 余角和补角
1.在具体情境中认识余角和补角,掌握余角和补角的性质;(重点)
2.能利用余角和补角的性质进行计算和简单的推理.(重点)
一、情境导入
让学生观察意大利著名建筑比萨斜塔.
比萨斜塔建于1173年,工程曾间断了两次很长的时间,历经约二百年才完工.设计为垂直建造,但是在工程开始后不久便由于地基不均匀和土层松软而倾斜.
二、合作探究
探究点一:余角和补角及其性质
【类型一】 余角和补角的概念
如果α与β互为余角,则( )
A.α+β=180° B.α-β=180°
C.α-β=90° D.α+β=90°
解析:如果α与β互为余角,则α+β=90°.故选D.
方法总结:正确记忆互为余角的定义是解决问题的关键.
【类型二】 利用余角和补角计算求值
已知∠A与∠B互余,且∠A的度数比∠B度数的3倍还多30°,求∠B的度数.
解析:根据∠A与∠B互余,得出∠A+∠B=90°,再由∠A的度数比∠B度数的3倍还多30°,从而得到∠A=3∠B+30°,再把两个算式联立即可求出∠2的值.
解:∵∠A与∠B互余,∴∠A+∠B=90°,又∵∠A的度数比∠B度数的3倍还多30°,∴∠A=3∠B+30°,∴3∠B+30°+∠B=90°,解得∠B=15°.故∠B的度数为15°.
方法总结:此题把角的关系结合方程问题一起解决,即把相等关系的问题转化为方程问题,利用方程组来解决.
【类型三】 余角、补角和角平分线的综合计算
如图,已知∠AOB在∠AOC内部,∠BOC=90°,OM、ON分别是∠AOB,∠AOC的平分线,∠AOB与∠COM互补,求∠BON的度数.
解析:根据补角的性质,可得∠AOB+∠COM=180°,根据角的和差,可得∠AOB+∠BOM=90°,根据角平分线的性质,可得∠BOM=12∠AOB,根据解方程,可得∠AOB的度数,根据角的和差,可得答案.
解:由∠AOB与∠COM互补,得∠AOB+∠COM=180°.
由角的和差,得∠AOB+∠BOM+∠COB=180°,∠AOB+∠BOM=90°.
由OM是∠AOB的平分线,得∠BOM=12∠AOB,
即∠AOB+12∠AOB=90°.解得∠AOB=60°.
由角的和差,得∠AOC=∠BOC+∠AOB=90°+60°=150°.
由ON平分∠AOC得∠AON=12∠AOC=12×150°=75°.由角的和差,得∠BON=∠AON-∠AOB=75°-60°=15°.
方法总结:本题考查了余角与补角及角平分线的相关知识,利用了补角的性质,角的和差,角平分线的性质进行计算,解决问题一定要结合图形认真分析,做到数形结合.
探究点二:方位角
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源