《二次函数与一元二次方程》教案4
- 资源简介:
约3140字。
课题:2.5.2二次函数与一元二次方程
教学目标:
1.复习巩固用函数y=ax2+bx+c的图象求方程ax2+bx+c=0的解.
2.让学生体验一元二次方程ax2+bx+c =h的根就是二次函数y=ax2+bx+c 与直线y=h(h是实数)图象交点的横坐标的探索过程,掌握用图象交点的方法求一元二次方程ax2+bx+c =h的近似根.
3.利用图象法求一元二次方程的近似根,重要的是让学生懂得这种求解方程的思路,体验数形结合思想.
教学重点与难点:
重点:1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.
2.经历用图象法求一元二次方程的近似根的过程.
难点:利用二次函数的图象求一元二次方程的近似根并且估算.
教学过程:
一、复习回顾,开辟道路
二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?
1.若方程ax2+bx+c=0的根为x1=-2和x2=3,则二次函数y=ax2+bx+c的图象与x轴交点坐标是 .
2.抛物线y=0.5x2-x+3与x轴的交点情况是( )
A、两个交点 B、一个交点 C、没有交点 D、画出图象后才能说明
3.不画图象,求抛物线y=x2-x-6与x轴交点坐标.
处理方式:以问题的形式引导学生思考,让学生思考并回答以上问题,在集体交流时,对于学生给出的正确答案给予肯定,不足之处给予纠正.
设计意图:这一环节属于课前热身训练准备利用5分钟时间让学生尽快进入到学习新知识的准备中来.问题(1)(2)是对上节课知识内容的复习,考察学生对二次函数与一元二次方程关系的理解是否准确.问题(3)即作为对上节课内容的回顾,又为引入本节新课作好了铺垫.
二、尝试成功,探究创新
活动内容:
上节课我们学习了二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标和一元二次方程ax2+bx+c=0(a≠0)的根的关系,懂得了二次函数图象与x轴交点的横坐标,就是y=0时的一元二次方程的根.于是,我们在不解方程的情况下,只要知道二次函数与x轴交点的横坐标即可.但是在图象上我们很难准确地求出方程的解,所以要进行估算.
你能利用二次函数的图象估计一元二次方程x2+2x-10=0的根吗?(精确到0.1)
x -4.1 -4.2 -4.3 -4.4
y -1.39 -0.76 -0.11 0.56
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源