2017年山东省日照市高考数学一模试卷(理科)(解析版)
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
共21小题,约10300字。
2017年山东省日照市高考数学一模试卷(理科)(解析版)
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合M={0,1,2},N={x|﹣1≤x≤1,x∈Z},则( )
A.M⊆N B.N⊆M C.M∩N={0,1} D.M∪N=N
2.如果复数z= (b∈R)的实部和虚部相等,则|z|等于( )
A.3 B.2 C.3 D.2
3.“log2(2x﹣3)<1”是“4x>8”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
4.函数y=x2+ln|x|的图象大致为( )
A. B. C. D.
5.函数f(x)=Acos(ωx+φ)(A>0,ω>0,﹣π<φ<0)的部分图象如图所示,为了得到g(x)=Asinωx的图象,只需将函数y=f(x)的图象( )
A.向左平移 个单位长度 B.向左平移 个单位长度
C.向右平移 个单位长度 D.向右平移 个单位长度
6.甲、乙、丙 3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法总数是( )
A.210 B.84 C.343 D.336
7.已知变量x,y满足:: ,则z=( )2x+y的最大值为( )
A. B.2 C.2 D.4
8. 公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为( )
(参考数据: ≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)
A.12 B.24 C.36 D.48
9.已知O为坐标原点,F是双曲线 的左焦点,A,B分别为Γ的左、右顶点,P为Γ上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于点E,直线 BM与y轴交于点N,若|OE|=2|ON|,则 Γ的离心率为( )
A.3 B.2 C. D.
10.曲线 的一条切线l与y=x,y轴三条直线围成三角形记为△OAB,则△OAB外接圆面积的最小值为( )
A. B. C. D.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源