《整式》复习学案
- 资源简介:
约8350字。
第三讲 整式
【基础知识回顾】
一、整式的有关概念:
:由数与字母的积组成的代数式
1、整式:
多项式: 。
单项式中的 叫做单项式的系数,所有字母的 叫做单项式的次数。
组成多项式的每一个单项式叫做多项式的 ,多项式的每一项都要带着前面的符号。
2、同类项:
①定义:所含 相同,并且相同字母的 也相同的项叫做同类项,常数项都是同类项。
②合并同类项法则:把同类项的 相加,所得的和作为合并后的, 不变。
【名师提醒:1、单独的一个数字或字母都是 式。2、判断同类项要抓住两个相同:一是 相同,二是 相同,与系数的大小和字母的顺序无关。】
二、整式的运算:
1、整式的加减:①去括号法则:a+(b+c)=a+ ,a-(b+c)=a- .
②添括号法则:a+b+c= a+( ),a-b-c= a-( )
③整式加减的步骤是先 ,再 。
【名师提醒:在整式的加减过程中有括号时一般要先去括号,特别强调:括号前是负号去括号时括号内每一项都要 。】
2、整式的乘法:
①单项式乘以单项式:把它们的系数、相同字母分别 ,对于只在一个单项式里含有的字母,则连同它的 作为积的一个因式。
②单项式乘以多项式:用单项式去乘多项式的每一项,再把所得的积 ,即m(a+b+c)= 。
③多项式乘以多项式:先用第一个多项式的每一项去乘另一个多项式的每一项,再把所得的积 ,即(m+n)(a+b)= 。
④乘法公式:Ⅰ、平方差公式:(a+b)(a—b)= ,
Ⅱ、完全平方公式:(a±b)2 = 。
【名师提醒:1、在多项式的乘法中有三点注意:一是避免漏乘项,二是要避免符号的错误,三是展开式中有同类项的一定要 。2、两个乘法公式在代数中有着非常广泛的应用,要注意各自的形式特点,灵活进行运用。】
3、整式的除法:
①单项式除以单项式,把 、 分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
②多项式除以单项式,先用这个多项式的每一项 这个单项式,再把所得的商 。即(am+bm)÷m= 。
三、幂的运算性质:
1、同底数幂的乘法: 不变 相加,即:a m a n= (a>0,m、n为整数)
2、幂的乘方: 不变 相乘,即:(a m) n = (a>0,m、n为整数)
3、积的乘方:等于积中每一个因式分别乘方,再把所得的幂 。
即:(ab) n = (a>0,b>0,n为整数)。
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源