《平面与平面垂直的性质》教案2
- 资源简介:
约3820字。
§2.3.4 平面与平面垂直的性质
一、教材分析
空间中平面与平面之间的位置关系中,垂直是一种非常重要的位置关系,它不仅应用较多,而且是空间问题平面化的典范.空间中平面与平面垂直的性质定理具备以下两个特点:(1)它是立体几何中最难、最“高级”的定理.(2)它往往又是一个复杂问题的开端,即先由面面 垂直转化为线面垂直,否则无法解决问题.因此,面面垂直的性质定理是 立 体几何中最重要的定理.
二、教学目标
1.知识与技能
(1)使学生掌握平面与平面垂直的性质定理;
(2)能运用性质定理解决一些简单问题;
(3)了解平面与平面垂直的判定定理和性质定理间的相互关系.
2.过程与方法
(1)让学生在观察物体模型的基础上,进行操作确认,获得对性质定理正确性的认识;
3.情感、态度与价值观
通过“直观感知、操作确认、推理证明”,培养学生空间概念、空间想象能力以及逻辑推理能力.
三、教学重点与难点
教学重点:平面与平面垂直的性质定理.
教学难点:平面与平面性质定理的应用.
四、课时安排
1课时
五、教学设计
(一)复习
(1)面面垂直的定义.
如果两个相交平面所成的二面角为直二面角,那么这两个平面互相垂直.
(2)面面垂直的判定定理.
两个平面垂直的判定定理:
如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.
两个 平面垂直的判定定理符号表述为: α⊥β.
两个平面垂直的判定定理图形表述为:
图1
(二)导入新课
思路1.(情境导入)
黑板所在平面与地面所在平面垂直,你能否在黑板上画一条直线与地面垂直?
思路2.(事例导入)
如图2,长方体ABCD—A′B′C′D′中,平面A′ADD′与平面ABCD垂直,直线A′A垂直于其交线AD.平面A′ADD′内的直线A′A与平面ABCD垂直吗?
图2
(二)推 进新课、新知探究、提出问题
①如图3,若α⊥β,α∩β=CD,AB α,AB⊥CD,AB∩CD=B.
请同学们讨论直线AB与平面β的位置关系.
图3
②用三种语言描述平面与平面垂直的性质定理,并给出证明.
③设平面α⊥平面β,点P∈α,P∈a,a⊥β,请同学们讨论直线a与平面α的关系.
④分析平面与平面垂直的性质定理的特点,讨论应用定理的难点.
⑤总结应用面面垂直的性质定理的口诀.
活动:问题①引导学生作图或借助模型探究得出直线AB与平面β的关系.
问题②引导学生进行语言转换.
问题③引导学生作图或借助模型探究得出直线a与平面α的关系.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源