《用二分法求方程的近似解》教案12
- 资源简介:
约5390字。
3.1.2 用二分法求方程的近似解
整体设计
教学分析
求方程的解是常见的数学问题,这之前我们学过解一元一次、一元二次方程,但有些方程求精确解较难.本节从另一个角度来求方程的近似解,这是一种崭新的思维方式,在现实生活中也有着广泛的应用.用二分法求方程近似解的特点是:运算量大,且重复相同的步骤,因此适合用计算器或计算机进行运算.在教学过程中要让学生体会到人类在方程求解中的不断进步.
三维目标
1.让学生学会用二分法求方程的近似解,知道二分法是科学的数学方法.
2.了解用二分法求方程的近似解特点,学会用计算器或计算机求方程的近似解,初步了解算法思想.
3.回忆解方程的历史,了解人类解方程的进步历程,激发学习的热情和学习的兴趣.
重点难点
用二分法求方程的近似解.
课时安排
1课时
教学过程
导入新课
思路1.(情景导入)
师:(手拿一款手机)如果让你来猜这件商品的价格,你如何猜?
生1:先初步估算一个价格,如果高了再每隔10元降低报价.
生2:这样太慢了,先初步估算一个价格,如果高了每隔100元降低报价.如果低了,每50元上升;如果再高了,每隔20元降低报价;如果低了,每隔10元上升报价……
生3:先初步估算一个价格,如果高了,再报一个价格;如果低了,就报两个价格和的一半;如果高了,再把报的低价与一半价相加再求其半,报出价格;如果低了,就把刚刚报出的价格与前面的价格结合起来取其和的半价……
师:在现实生活中我们也常常利用这种方法.譬如,一天,我们华庄校区与锡南校区的线路出了故障,(相距大约3 500米)电工是怎样检测的呢?是按照生1那样每隔10米或者按照生2那样每隔100米来检测,还是按照生3那样来检测呢?
生:(齐答)按照生3那样来检测.
师:生3的回答,我们可以用一个动态过程来展示一下(展示多媒体课件,区间逼近法).
思路2.(事例导入)
有12个小球,质量均匀,只有一个球是比别的球重,你用天平称几次可以找出这个球,要求次数越少越好.(让同学们自由发言,找出最好的办法)
解:第一次,两端各放六个球,低的那一端一定有重球.
第二次,两端各放三个球,低的那一端一定有重球.
第三次,两端各放一个球,如果平衡,剩下的就是重球,否则,低的就是重球.
其实这就是一种二分法的思想,那什么叫二分法呢?
推进新课
新知探究
提出问题
①解方程2x-16=0.
②解方程x2-x-2=0.
③解方程x3-2x2-x+2=0.
④解方程(x2-2)(x2-3x+2)=0.
⑤我们知道,函数f(x)=lnx+2x-6在区间(2,3)内有零点.进一步的问题是,如何找出这个零点的近似值?
⑥“取中点”后,怎样判断所在零点的区间?
⑦什么叫二分法?
⑧试求函数f(x)=lnx+2x-6在区间(2,3)内零点的近似值.
⑨总结用二分法求函数零点近似值的步骤.
⑩思考用二分法求函数零点近似值的特点.
讨论结果:
①x=8.
②x=-1,x=2.
③x=-1,x=1,x=2.
④x= ,x= ,x=1,x=2.
⑤如果能够将零点所在的范围尽量缩小,那么在一定精确度的要求下,我们可以得到零点的近似值.为了方便,我们通过“取中点”的方法逐步缩小零点所在的范围.〔“取中点”,一般地,我们把x= 称为区间(a,b)的中点〕
⑥比如取区间(2,3)的中点2.5,用计算器算得f(2.5)<0,因为f(2.5)•f(3)<0,所以零点在区间(2.5,3)内.
⑦对于在区间[a,b]上连续不断且f(a)•f(b)<0的函数y=f(x),通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫二分法(bisection).
⑧因为函数f(x)=lnx+2x-6,用计算器或计算机作出函数f(x)=lnx+2x-6的对应值表.
x 1 2 3 4 5 6 7 8 9
f(x) -4 -1.306 1.0986 3.3863 5.6094 7.7918 9.9459 12.0794 14.1972
由表可知,f(2)<0,f(3)>0,则f(2)•f(3)<0,这说明f(x)在区间内有零点x0,取区间(2,3)的中点x1=2.5,用计算器算得f(2.5)≈-0.084,因为f(2.5)•f(3)<0,所以x0∈(2.5,3).
同理,可得表(下表)与图象(如图3-1-2-1).
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源