《绝对值》教案17
- 资源简介:
约1670字。
一、课题 2.3绝对值(2)
二、教学目标
1、使学生进一步掌握绝对值概念;
2、使学生掌握利用绝对值比较两个负数的大小;
3、注意培养学生的推时论证能力
三、教学重点和难点
负数大小比较
四、教学手段
现代课堂教学手段
五、教学方法
启发式教学
六、教学过程
(一)、从学生原有认知结构提出问题
1、计算:|+15|;|- |;|0|
2、计算:| - |;|- - |.
3、比较-(-5)和-|-5|,+(-5)和+|-5|的大小
4、哪个数的绝对值等于0?等于 ?等于-1?
5、绝对值小于3的数有哪些?绝对值小于3的整数有哪几个?
6、a,b所表示的数如图所示,求|a|,|b|,|a+b|,|b-a|
7、若|a|+|b-1|=0,求a,b
这一组题从不同角度提出问题,以使学生进一步掌握绝对值概念
解:1、|+15|=15,|- |= ,|0|=0
让学生口答这样做的依据
2、| - |=| |= |,|- - =-(- - )。
说明:“| |”有两重作用,即绝对值和括号
3、因为-(-5)=5,-|-5|=-5,5>-5,
所以-(-5)>-|-5|。
这里需讲清一个问题,即-(-5)和-|-5|的读法,让学生熟悉,-(-5)读作-5的相反数,-|-5|读作-5绝对值的相反数
因为+(-5)=-5,+|-5|=,-5<5,
所以+(-5)<+|-5|
4、0的绝对值等于0,± 的绝对值等于 ,没有什么数的绝对值等于-1(为什么?)用符号语言表示应为:
|0|=0,|+ |= |,|- |= 。
这里应再次强调绝对值是数轴上的点与原点的距离,并指出距离是非负量
5、绝对值小于3的数是从-3到3中间的所有的有理数,有无数多个;但绝对值小于3的整数只有五个:-2,-1,0,1,2
用符号语言表示应为:
因为|x|<3,所以-3<x<3
如果x是整数,那么x=-2,-1,0,1,2
6、由数轴上a、b的位置可以知道a<0,b>0 ,且|a|<|b|
所以|a|=-a,|b|=b,
|a+b|=a+b,|b-a|=b-a
7、若a+b=0,则a,b互为相反数或a,b都是0,因为绝对值非负,所以只有|a|=0,|b-1|=0,由绝对值意义得a=0,b-1=0
用符号语言表示应为:
因为|a|+|b-1|=0,所以a=0,b-1=0,
所以a=0,b=1
(二)、师生共同探索利用绝对值比较负数大小的法则
利用数轴我们已经会比较有理数的大小
由上面数轴,我们可以知道c<b<a,其中b,c都是负数,它们的绝对值哪个大?显然 > 引导学生得出结论:
两个负数,绝对值大的反而小
这样以后在比较负数大小时就不必每次再画数轴了
(三)、运用举例 变式练习
例1 比较-4 与-|—3|的大小
例2 已知a>b>0,比较a,-a,b,-b的大小
例3 比较- 与- 的大小
课堂练习
1、比较下列每对数的大小:
与 ;|2|与 ;- 与 ; 与
2、比较下列每对数的大小:
- 与- ;- 与- ;- 与- ;- 与-
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源