八年级上册数学教案集
- 资源简介:
约13450字。
八年级上册数学教案集
13.1函数第一教时
教学目标
1、通过直观感知,领悟常量、变量、函数的意义。
2、了解函数三种表示方法中的列表法和解析法
教学重点、难点
1、重点:理解函数的意义,并会根据具体问题探究相应的函数关系式
2、难点:对函数意义的准确理解
教学过程
一、创设情境,导入新课
导语:注意观察情境图,并引导学生思考情境图中的热气球是怎样运动变化的?图下方的表格以有等式“h=30t+1200”表达的是怎样的含义?
二、合作交流、解读探究
问题1、如图13-1,用热气球探测高空气象,设热气球从海拔1200m处的某地上升空,它上升后到达的海拔高度hm与上升时间tmin的关系记录如下表:
(引导学生观察课本P22图13-1)
(1)观察上表,热气球在升空的过程中平均每分上升多少米?
(2)你能写出表达式上升后到达的海拔高度h与上升时间t的关系式吗?
(h =30 t +1200)
问题2:图13-2是S市某日自动测量仪记下的用电负荷曲线。
(引导学生观察图13-2)
看图回答
(1)任意给出这天中的某一时刻X,能找到这一时刻的负荷ymw(兆瓦)是多少吗?
(2)这一天的用电高峰、用电低谷时负荷各是多少?它们是在什么时刻达到的?
(3)S市规定电费实行分时计价:正常用电时段(6:00-22:00)的电价为0.61元/(kw•h),低谷用电时刻段(22:00-次日6:00)的电价为0.30元/(kw•h),你知道其中的道理吗?
问题3:汽车在行驶过程中,由于惯性的作用刹车后的仍将滑行一段距离才能停住,刹车距离是分析事故原因的一个重要因素。某型号的汽车在平整路面上的刹车距离Sm与车速vkm/h之间有下列经验公式:
当刹车时速V分别是40、80、120 km/h时,相应的滑行距离S分别是多少?
问题4:为加强公民的节水意识,某城市制定以下用水收费标准:每户每月用水不超过7 m3时,每立方米收费1元,并加收0.2元的污水处理费;超过7 m3的部分每立方米收费1.5元,并加收0.4元的污水处理费,如果设某户每月用水量为X m3,应缴水费y元。
(1)填写下表:
用水量
x / m3 1 2 3 4 5 6 7 8 9 10
水费y/元
(2)对于每个给定的用水量X,本应的水费是确定的吗?
问题1中,热气球的上升速度在上升速度过程中的始终保持不变(取值一直为50 m / min),这个量叫做常量,而热热气球的上升时间t和上升的高度h都是变化的,叫做变量
h是随着t的变化而变化的
任给变量的t的一个值,就可以相应地得到变量h的一个确定的值,t是自变量,h是因变量
[交流]:在问题2-4中,哪些量是常量?哪些量是自变量?哪些变量是因变量?与同伴交流。
一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个值,y都有唯一确定的值与其对应的,那么我们就说x是自变量,y是x的函数
从上面讨论可以看出,表示两个变量的函数关系,主要有下列三种方法
1、列表法
通过列出自变量的值,与对应函数值的表格来表示函数关系的方法叫做列表法
例如:问题1
2、解析法
用数学式子表示函数关系的方法叫做解析法
例如:问题3
三、例题评析
例1、一个游泳池内有水300 m3,现打开排水管以每时25 m3排出量排水。
(1)写出游泳池内剩余水量Q m3与排水时间th间的函数关系式;
(2)写出自变量t的取值范围
(3)开始排水后的第5h末,游泳池中还有多少水?
(4)当游泳池中还剩150 m3已经排水多少时?
解:(1)排水后的剩水量Q m3是排水量时间h的函数,有Q=-25 t +300t
(2)由于池中共有300 m3每时排25 m3全部排完只需300÷25=12(h),故自变量T的取值范围是0≤t≤12
(3)当t=5,代入上式得Q=-5×25+300=175(m3),即第5h末池中还有水175 m3
(4)当Q=150时,由150=-25 t +300,得t =6,即节6 h末池中有水150m3
四、学生练习
课本P25,第1、2、3
五、小结
掌握函数的概念,能根据问题背景,确定函数关系式,会确定自变量的取值范围。
六、布置作业:
1、课本P30,第1、2
2、《基训》
教学后记:
第二教时
教学目标
1、了解函数的第三种表示方法-图象法
2、会用描点画出函数的近似图象
教学重点、难点
1、点:认识函数图象的意义,在了解列表或画图法表示函数的基础上,会对
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源