《整式的加减》教案18
- 资源简介:
约3440字。
1.2 整式的加减(一)
●教学目标
(一)教学知识点
1.经历用字母表示数量关系的过程,发展符号感.
2.会进行整式加减运算,并能说明其中的算理.
(二)能力训练要求
1.在进行整式加减运算的过程中,发展学生有条理的思考及语言表达能力.
2.在实际情景中,进一步发展学生的符号感.
(三)情感与价值观要求
1.在解决问题的过程中了解数学的价值,发展“用数学”的信心.
2.在解决问题的过程中,获得成就感,培养学习数学的兴趣.
●教学重点
1.经历字母表示数的过程,发展符号感.
2.会进行整式加减运算,并能说明其中的算理.
●教学难点
灵活地列出算式和去括号.
●教学方法
活动——讨论法
教师利用活动游戏或根据情况创设情景,鼓励学生通过讨论发现数量关系,运用符号进行表示,再利用所学的合并同类项、去括号的法则验证自己的发现,从而理解整式加减运算的算理.
●教具准备
投影片三张
第一张:做一做,记作(§1.2.1 A)
第二张:例题,记作(§1.2.1 B)
第三张:练习,记作(§1.2.1 C)
●教学过程
Ⅰ.提出问题,引入新课
[师]下面我们先来做一个游戏:
(1)任意写一个两位数;
(2)交换这个两位数的十位数字和个位数字,又得到一个数;
(3)求这个两位数的和.
[生]我取了一个两位数12;交换这个两位数的十位数字和个位数字,又得到数21;求得这两个数的和是33.
我又取了一个两位数29;交换个位和十位上的数字得到92;求得这两个数的和是121.
最后,我取了一个两位数31;交换个位和十位上的数字得到13;求得这两个数的和是44.
观察可以发现这些和都是11的倍数.例如33是11的3倍,121是11的11倍,44是11的4倍.
[师]这个规律是不是对任意的两位数都成立呢?为什么?
(鼓励同伴之间互相讨论,相互启发)
[生]对于任意一个两位数,我们可以用字母表示数的形式表示出来,设a、b分别表示两位数十位上的数字和个位上的数字,那么这个两位数可以表示为:10a+b.交换这个两位数的十位数字和个位数字,就得到一个新的两位数是:10b+a.
这两个数相加:(10a+b)+(10b+a)=10a+b+10b+a=(10a+a)+(b+10b)=11a+11b
根据运算的结果,可知一个两位数,交换它十位和个位上数字,得到一个新两位数,这两数的和是11的倍数.
[师]很棒!(10a+b)+(10b+a)是什么样的运算呢?10a+b与10b+a都是什么样的代数式?
[生]10a+b与10b+a是多项式,也就是整式,因此(10a+b)+(10b+a)是整式的加法.
[师]如果要是求这两个数的差,又如何列出计算的式子呢?
[生](10a+b)-(10b+a).
[师]这就是整式的减法.你能发现它们的差有何规律吗?
[生](10a+b)-(10b+a)=10a+b-10b-a=(10a-a)+(b-10b)=9a-9b
由此可知,这两个数的差是9的倍数.
[师]我们借助于整式的加减法将实际问题中的数量关系用字母表示出来,并发现了其中的规律.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源