《函数的单调性》教学设计4
- 资源简介:
约5260字。
《函数的单调性》教学设计
一、设计理念:
1、重视数学概念、公式的发生、发展过程,在概念的形成过程中培养学生发现问题、研究问题、解决问题的能力
2、重视学生的学习过程,在教学中注重培养学生独立思考、相互交流、合作探究的能力
3、重视诱思探究的教学理论在课堂教学中的渗透,在课堂教学中要体现“教师为主导、学生为主体”,教师启发诱导,学生自主探究,激发学生的学习兴趣、培养学生良好的思维习惯和思维品质
二、设计思路:
1、以函数的单调性的概念为主线,贯穿于整个教学过程中
对函数单调性概念的深入而准确的认识往往是学生认知过程的难点。因此在教学中突出对概念的分析一方面是为了分析函数单调性的定义,另一方面让学生掌握如何学会、弄懂一个概念的方法,也为今后对其他数学概念的学习有所帮助。
使用单调性的定义证明具体函数的单调性是教学中的又是一个难点。使用单调性的定义证明具体函数的单调性是对单调性定义的深层理解,给出“作差、变形、定号”的具体步骤是非常必要的,一方面是有利于学生理解函数单调性的概念;另一方面有利于学生掌握证明方法、形成证明思路。另外也为今后学习不等式证明中的作差法做一定的铺垫。
2、加强“数”与“形”的结合,由直观到抽象、由特殊到一般的数学思维能力的培养始终贯穿于函数单调性概念教学过程中
函数单调性的研究方法很具有典型性,体现了对函数研究的一般方法。在函数单调性的教学中要引导学生逐步学会“直观感受---定性描述---定量刻画---具体应用”的探究方法,这样一方面为了便于对单调性概念有更好地理解,同时也为今后学习函数的其他概念和性质提供一定的参考方法。
3、在单调性概念的教学与研究中要体现出单调性是函数的一个局部性质
函数的单调性是研究“当自变量不断增大时,函数值随着增大还是减小”,即函数图像的升降性,与函数奇偶性不同,函数的奇偶性是研究“当自变量的值互为相反数时,函数值是否也互为相反数”,即函数图像的对称性。
函数的单调性与函数的极值是函数的局部性质,与函数的奇偶性、最大(或小)值有着本质的区别,后者是函数的整体性质,在教学中要体现出函数的单调区间是函数定义域上的一个子集(区间),关注的是函数在这个子集上的增减性。通过函数的图形以及一些具体的函数发现“有些函数在整个定义域中具有单调性,而有些函数在整个定义域中不具有单调性,可能在某个区间上具有单调性”
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源