高中数学必修5全册学案

  • 手机网页: 浏览手机版
  • 资源类别: 人教课标版 / 高中教案 / 必修五教案
  • 文件类型: doc
  • 资源大小: 1.35 MB
  • 资源评级:
  • 更新时间: 2011/12/19 13:16:41
  • 资源来源: 会员转发
  • 资源提供: jiahexing [资源集]
  • 下载情况: 本月:获取中 总计:获取中
  • 下载点数: 获取中 下载点  如何增加下载点
  •  点此下载传统下载

资源简介:
数学必修5学案
  01.doc
  02.doc
  03.doc
  04.doc
  05.doc
  06.doc
  07.doc
  09.doc
  11.doc
  12.doc
  13.doc
  14.doc
  15-16.doc
  17.doc
  18.doc
  19.doc
  20.doc
  21.doc
  22.doc
  23.doc
  24.doc
  25.doc
  应用正弦定理判断三角形的形状有两种途径解三角形小结
  制作:江旨焱            审核:皇甫真
  本章主要讲的是正弦定理和余弦定理及其应用。
  1、正弦定理的应用
  (1)应用正弦定理解三角形. 应用正弦定理解三角形有两类问题,一类是已知两角和另一边,求其他边和角,此种情况可先借助三角形内角和定理求出另一角,再利用正弦定理求各边,另一类是已知两边及其中一边的对角求其他边和角,解此类问题需借助三角形边角的大小关系确定解的情况。
  (2)应用正弦定理判断三角形的形状,应用正弦定理判断三角形的形状有两种途径,一是化角为边,得到边的关系,副两边相等,三边相等, 等,另外一种是化边为角得到角的关系,如二角相等,三角相等或角的大小等。
  值得注意的是已知三角形的任意两边和其中一边的对角,运用正弦定理解三角形时,解不确定,可结合三角形中大边对大角的性质去判断解的个数。
  2、余弦定理的应用
  余弦定理有两方面的应用:一是已知三角形的两边和它们的夹角,可以由余弦定理求出第三边进而求出其余两角:二是已知三角形的三边,利用余弦定理求出一个角,进而求出其他两角
  课题:等差数列的前n项和(二)
  制作:张志新       审核:皇甫真
  一 使用说明:
  1. 结合问题用大概10分钟的时间自主学习课本的相关内容,完成问题导学.
  2. 然后大家再用15分钟时间讨论本章的重点内容,讨论时全体起立,小组内解决不了的问题交由老师分析解答,讨论过程要认真积极.
  二 学习目标:
  1.了解等差数列前n项和公式的函数特征.
  2.掌握等差数列的前n项和的性质,灵活运用等差数列前n项和公式及有关性质解题.
  三. 知识回顾
  等差数列 的前n项和公式有                 .
  求数列中几种类型的通项公式
  制作:高二数学组                    审核:皇甫真
  一、由递推关系求通项公式
  (1)递推式为 = + 及 =  ( 为常数)(可利用等差、等比数列来求)
  例、⒈ 已知数列{ }满足 = +2,且 =1,求 .
  ⒉ 已知数列{ }满足 =  ,且 =2,求 .
  (2)递推式为 = + ,( 需可求和)
  例、已知数列{ }满足 = + , =1,求 .
  练习 已知数列{ }中, = ,且当 时 ,求通项公式
  一元二次不等式及其解法
  制作时间:2009年9月13日   使用时间:2009年9月15日
  制作人:孙伟伟     审核人:皇甫真
  【使用说明】 1.课前完成预习学案的问题导学及例题.
  2.认真限时完成,规范书写;课上小组合作探讨,答疑解惑.
  学习目标;1.通过学习,要掌握把实际问题中抽象为一元二次不等式的方法。
  2.理解一元二次不等式的有关概念,并能借助二次函数的图像了解二次函数、一元二次函数和一元二次不等式之间的关系,会解一元二次不等式。
  3.学会用一元二次不等式的知识解决一些简单的实际问题。
  问题导学;1.一般地,(               )叫做一元二次不等式。
  2. 一元二次不等式的一般表达形式为(             ),其中a,b,c均为常数。
  3. 一元二次不等式经过变形,可以化成以下两种标准形式:
  (1)                       (a>0)
  (2)            
 点此下载传统下载搜索更多相关资源
  • 说明:“点此下载”为无刷新无重复下载提示方式;“传统下载”为打开新页面进行下载,有重复下载提示。
  • 提示:非零点资源点击后将会扣点,不确认下载请勿点击。
  • 我要评价有奖报错加入收藏下载帮助

下载说明:

  • 没有确认下载前请不要点击“点此下载”、“传统下载”,点击后将会启动下载程序并扣除相应点数。
  • 如果资源不能正常使用或下载请点击有奖报错,报错证实将补点并奖励!
  • 为确保所下资源能正常使用,请使用[WinRAR v3.8]或以上版本解压本站资源。
  • 站内部分资源并非原创,若无意中侵犯到您的权利,敬请来信联系我们。

资源评论

共有 0位用户发表了评论 查看完整内容我要评价此资源