《坐标系与参数方程》教案
- 资源简介:
约16080字。
坐标系与参数方程
坐标系是解析几何的基础。在坐标系中,可以用有序实数组确定点的位置,进而用方程刻画几何图形。为便于用代数的方法刻画几何图形或描述自然现象,需要建立不同的坐标系。极坐标系、柱坐标系、球坐标系等是与直角坐标系不同的坐标系,对于有些几何图形,选用这些坐标系可以使建立的方程更加简单。
参数方程是以参变量为中介来表示曲线上点的坐标的方程,是曲线在同一坐标系下的又一种表示形式。某些曲线用参数方程表示比用普通方程表示更方便。学习参数方程有助于学生进一步体会解决问题中数学方法的灵活多变。
本专题是解析几何初步、平面向量、三角函数等内容的综合应用和进一步深化。极坐标系和参数方程是本专题的重点内容,对于柱坐标系、球坐标系等只作简单了解。通过对本专题的学习,学生将掌握极坐标和参数方程的基本概念,了解曲线的多种表现形式,体会从实际问题中抽象出数学问题的过程,培养探究数学问题的兴趣和能力,体会数学在实际中的应用价值,提高应用意识和实践能力。
内容与要求
1. 坐标系
(1)回顾在平面直角坐标系中刻画点的位置的方法,体会坐标系的作用。
(2)通过具体例子,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况。
(3)能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化。
(4)能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程。通过比较这些图形在极坐标系和平面直角坐标系中的方程,体会在用方程刻画平面图形时选择适当坐标系的意义。
(5)借助具体实例(如圆形体育场看台的座位、地球的经纬度等)了解在柱坐标系、球坐标系中刻画空间中点的位置的方法,并与空间直角坐标系中刻画点的位置的方法相比较,体会它们的区别。
2. 参数方程
(1)通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。
(2)分析直线、圆和圆锥曲线的几何性质,选择适当的参数写出它们的参数方
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源