福建省2012届高考数学一轮经典例题:充分条件与必要条件
- 资源简介:
约2110字。
福建省2012届高考数学一轮经典例题:充分条件与必要条件
例1 已知p:x1,x2是方程x2+5x-6=0的两根,q:x1+x2=-5,则p是q的
[ ]
A.充分但不必要条件 B.必要但不充分条件
C.充要条件 D.既不充分也不必要条件
分析 利用韦达定理转换.
解 ∵x1,x2是方程x2+5x-6=0的两根,
∴x1,x2的值分别为1,-6,
∴x1+x2=1-6=-5.
因此选A.
说明:判断命题为假命题可以通过举反例.
例2 p是q的充要条件的是
[ ]
A.p:3x+2>5,q:-2x-3>-5
B.p:a>2,b<2,q:a>b
C.p:四边形的两条对角线互相垂直平分,q:四边形是正方形
D.p:a≠0,q:关于x的方程ax=1有惟一解
分析 逐个验证命题是否等价.
解 对A.p:x>1,q:x<1,所以,p是q的既不充分也不必要条件;
对B.p q但q p,p是q的充分非必要条件;
对C.p q且q p,p是q的必要非充分条件;
说明:当a=0时,ax=0有无数个解.
例3 若A是B成立的充分条件,D是C成立的必要条件,C是B成立的充要条件,则D是A成立的
[ ]
A.充分条件 B.必要条件
C.充要条件 D.既不充分也不必要条件
分析 通过B、C作为桥梁联系A、D.
解 ∵A是B的充分条件,∴A B①
∵D是C成立的必要条件,∴C D②
由①③得A C④
由②④得A D.
∴D是A成立的必要条件.选B.
说明:要注意利用推出符号的传递性.
例4 设命题甲为:0<x<5,命题乙为|x-2|<3,那么甲是乙的
[ ]
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
分析 先解不等式再判定.
解 解不等式|x-2|<3得-1<x<5.
∵0<x<5 -1<x<5,但-1<x<5 0<x<5
∴甲是乙的充分不必要条件,选A.
说明:一般情况下,如果条件甲为x∈A,条件乙为x∈B.
当且仅当A=B时,甲为乙的充要条件.
例5 设A、B、C三个集合,为使A (B∪C),条件A B是
[ ]
A.充分条件 B.必要条件
C.充要条件 D.既不充分也不必要条件
分析 可以结合图形分析.请同学们自己画图.
∴A (B∪C).
但是,当B=N,C=R,A=Z时,
显然A (B∪C),但A B不成立,
综上所述:“A B” “A (B∪C)”,而
“A (B∪C)” “A B”.
即“A B”是“A (B∪C)”的充分条件(不必要).选A.
说明:画图分析时要画一般形式的图,特殊形式的图会掩盖真实情况.
例6 给出下列各组条件:
(1)p:ab=0,q:a2+b2=0;
(2)p:xy≥0,q:|x|+|y|=|x+y|;
(3)p:m>0,q:方程x2-x-m=0有实根;
(4)p:|x-1|>2,q:x<-1.
其中p是q的充要条件的有
[ ]
A.1组 B.2组
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源