《有理数的加法》教案15
- 资源简介:
约1930字。
课题: 1.3.1 有理数的加法(二)
教学目标 1,经历有理数加法运算律的探索过程,理解有理数加法的运算律.
2,能用运算律简化有理数加法的运算.
3,使学生逐渐养成,“算必讲理”的习惯,培养学生初步的推理能力与表达能力.
教学难点 合理运用运算律
知识重点 加法交换律和结合律,及其合理、灵活的运用
教学过程(师生活动) 设计理念
设置情境
引入课题 回顾复习:小学时已学过的加法运算律有哪几条?
学生回答后教师接着问:你能用自己的语言或举例
子来说明一下加法的交换律与结合律吗?
提出问题:这些运算律在有理数加法中适用吗?这
就是这节课我们要研究的课题.
分析问题
探究新知 探讨加法运算律在有理数范围内是否适用.
1,有理数加法交换律的学习.
问题1:我们如何知道加法交换律在有理数范围内是否适用?(先由教师举一些实际例子来说明,然后鼓励学生举不同的数来验证)
问题2:我们如何用语言来叙述有理数加法的交换律呢?(这个问题请学生回答,并互相补充)
教师归纳后板书:“有理数加法中,两个数相加,交换加数的位置,和不变.”
问题3 :你能把有理数加法的交换律用字母来表
示吗?
由学生回答得出a+b=b+a后,教师说明:
〔1〕式子中的字母分别表示任意的一个有理数.(如:既可成表示整数,也可以表示分数;既可以表示正数,也可以表示负数或0)。
(2)在同一个式子中,同一个字母表示同一个数.
2,有理数加法结合律的学习.
(基本步骤同于加法交换律的学习) “加法运算律对所有有理数都成立”目前只能
直接给出,让学生举例尝试只起到验证的作用.要
让学生举不同的数验证,是为避免学生只由一个例子即得出某种结论.鼓动学生用自己的语言表达所发现的贻论或规律.
让学生感受字母表示数的含义,同时也让学生体会到数学符号语言的简洁性.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源