《一次函数图象的应用》课堂实录1
- 资源简介:
约2610字。
§6.5.2 一次函数图象的应用(二)
知识与技能目标:
1.进一步训练学生的识图能力.
2.能利用函数图象解决简单的实际问题.
过程与方法目标:
1.通过函数图象获取信息,进一步培养学生的数形结合意识.
2.通过函数图象解决实际问题,进一步发展学生的数学应用能力.
情感态度与价值观目标:
通过函数图象来解决实际问题,使学生初步认识数学与人类生活的密切联系及对人类历史发展的作用,从而培养学生学习数学的兴趣,使他们能积极参与数学活动,进而更好地解决实际问题.
教学重点
一次函数图象的应用.
教学难点
从函数图象中正确读取信息.
教学方法
讲、练结合法.
教具准备
投影片两张:
第一张:补充例题(记作§6.5.2 A);
第二张:补充练习(记作§6.5.2 B).
教学过程
Ⅰ.导入新课
[师]上节课我们学习了一次函数在水库蓄水量与干旱持续时间方面的应用,还有一次函数在摩托车油箱中的剩余油量与行驶路程方面的应用,一次函数的应用不仅仅是在这两个方面,本节课我们继续学习它的应用.
Ⅱ.讲授新课
一、例题讲解
1.如上图,l1反映了某公司产品的销售收入与销售量的关系,l2反映了该公司产品的销售成本与销售量的关系,根据图象填空.
(1)当销售量为2吨时,销售收入=_________元,销售成本=_________元;
(2)当销售量为6吨时,销售收入=_________元,销售成本=_________元;
(3)当销售量等于_________时,销售收入等于销售成本;
(4)当销售量_________时,该公司赢利(收入大于成本);当销售量_________时,该公司亏损(收入小于成本);
(5)l1对应的函数表达式是________________;l2对应的函数表达式是_________.
[师]请大家先独立思考,然后小组交流后回答.
[生]解:(1)当销售量为2吨时,销售收入=2000元,销售成本为3000元;
(2)当销售量为6吨时,销售收入=6000元,销售成本=5000元;
(3)当销售量等于4吨时,销售收入等于销售成本;
(4)当销售量大于4吨时,该公司赢利,当销售量小于4吨时,该公司亏损.
(5)直线l1经过原点和(4,4000),设表达式为y=kx,把(4,4000)代入,得
4000=4k,∴k=1000
∴l1的表达式为y=1000x
l2经过点(0,2000)和(4,4000)
设表达式为y=kx+b
根据题意,得
b=2000 ①
4k+b=4000 ②
把①代入②,得4k+2000=4000
∴k=500
∴l2的表达式为y=500x+2000
故l1对应的函数表达式为y=1000x,l2对应的函数表达式为y=500x+2000
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源