《集合间的基本关系》教案2
- 资源简介:
约2520字。
第2课时 集合间的基本关系
(一)教学目标;
1.知识与技能
(1)理解集合的包含和相等的关系.
(2)了解使用Venn图表示集合及其关系.
(3)掌握包含和相等的有关术语、符号,并会使用它们表达集合之间的关系.
2.过程与方法
(1)通过类比两个实数之间的大小关系,探究两个集合之间的关系.
(2)通过实例分析,获知两个集合间的包含与相等关系,然后给出定义.
(3)从自然语言,符号语言,图形语言三个方面理解包含关系及相关的概念.
3.情感、态度与价值观
应用类比思想,在探究两个集合的包含和相等关系的过程中,培养学习的辨证思想,提高学生用数学的思维方式去认识世界,尝试解决问题的能力.
(二)教学重点与难点
重点:子集的概念;难点:元素与子集,即属于与包含之间的区别.
(三)教学方法
在从实践到理论,从具体到抽象,从特殊到一般的原则下,一方面注意利用生活实例,引入集合的包含关系. 从而形成子集、真子集、相等集合等概念. 另一方面注意几何直观的应用,即Venn图形象直观地表示、理解集合的包含关系,子集、真子集、集合相等概念及有关性质.
(四)教学过程
教学环节 教学内容 师生互动 设计意图
创设情境提出问题 思考:实数有相等关系,大小关系,类比实数之间的关系,联想集合之间是否具备类似的关系. 师:对两个数a、b,应有a>b或a = b或a<b.
而对于两个集合A、B它们也存在A包含B,或B包含A,或A与B相等的关系. 类比生疑,
引入课题
概念形成 分析示例:
示例1:考察下列三组集合,并说明两集合内存在怎样的关系
(1)A = {1,2,3}
B = {1,2,3,4,5}
(2)A = {新华中学高(一)6班的全体女生}
B = {新华中学高(一)6 班的全体学生}
(3)C = {x | x是两条边相等的三角形}
D = {x | x是等腰三角形}
1.子集:
一般地,对于两个集合A、B,如果A中任意一个元素都是B的元素,称集合A是集合B的子集,记作 ,读作:“A含于B”(或B包含A)
2.集合相等:
若 ,且 ,则A=B.
生:实例(1)、(2)的共同特点是A的每一个元素都是B的元素.
师:具备(1)、(2)的两个集合之间关系的称A是B的子集,那么A是B的子集怎样定义呢?
学生合作:讨论归纳子集的共性.
生:C是D的子集,同时D是C的子集.
师:类似(3)的两个集合称为相等集合.
师生合作得出子集、相等两概念的数学定义. 通过实例的共性探究、感知子集、相等概念,通过归纳共性,形成子集、相等的概念.
初步了解子集、相等两个概念.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源