《数学归纳法》教案3
- 资源简介:
约1080字。
课题:数学归纳法
一、教学目标:
1.了解数学归纳法的原理,理解数学归纳法的一般步骤。
2.掌握数学归纳法证明问题的方法。
3.能用数学归纳法证明一些简单的数学命题。
二、教学重点:掌握数学归纳法的原理及证明问题的方法。
难点:能用数学归纳法证明一些简单的数学命题。
三、教学过程:
【创设情境】
1.华罗庚的“摸球实验”。
2.“多米诺骨牌实验”。
问题:如何保证所摸的球都是红球?多米诺骨牌全部倒下?处了利用完全归纳法全部枚举之外,是否还有其它方法?
数学归纳法:数学归纳法实际上是一种以数学归纳法原理为依据的演绎推理,它将一个无穷的归纳过程转化为一个有限步骤的演绎过程,是处理自然数问题的有力工具。
【探索研究】
1.数学归纳法的本质:
无穷的归纳→有限的演绎(递推关系)
2.数学归纳法公理:
(1)(递推奠基):当n取第一个值n0结论正确;
(2)(递推归纳):假设当n=k(k∈N*,且k≥n0)时结论正确;(归纳假设)
证明当n=k+1时结论也正确。(归纳证明)
由(1),(2)可知,命题对于从n0开始的所有正整数n都正确。
【例题评析】
例1:以知数列{an}的公差为d,求证:
说明:①归纳证明时,利用归纳假设创造递推条件,寻求f(k+1)与f(k)的递推关系,是解题的关键。
②数学归纳法证明的基本形式;
(1)(递推奠基):当n取第一个值n0结论正确;
(2)(递推归纳):假设当n=k(k∈N*,且k≥n0)时结论正确;(归纳假设)
证明当n=k+1时结论也正确。(归纳证明)
由(1),(2)可知,命题对于从n0开始的所有正整数n都正确。
EX: 1.判断下列推证是否正确。
P88 2,3
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源