《镶嵌》教案

  • 手机网页: 浏览手机版
  • 资源类别: 人教版 / 初中教案 / 七年级下册教案
  • 文件类型: doc
  • 资源大小: 114 KB
  • 资源评级:
  • 更新时间: 2010/10/1 19:58:11
  • 资源来源: 会员转发
  • 资源提供: renheren [资源集]
  • 下载情况: 本月:获取中 总计:获取中
  • 下载点数: 获取中 下载点  如何增加下载点
  •  点此下载传统下载

资源简介:

约2650字。

  《镶嵌》教案
  一、教学目标
  1、知识与技能:了解平面镶嵌的几何意义,会利用有关几何图形设计“镶嵌”的图案。
  2、过程与方法:经历用正多边形镶嵌的过程,掌握正多边形的条件。
  3、情感态度与价值观:体会学习数学的乐趣,认识到数学在生产和生活中的广泛应用。
  二、教学活动的建议
  探究性活动是一种心得学习方式,它不是老师讲授、学生听讲的学习方式,而是学生自己应用已有的数学知识和能力,去探索研究生活中有趣而富有挑战问题的活动过程。
  教学活动中,教师提供必要的指点和帮助。引导学生对探究性活动进行反思,不仅关注学生是否能用已有的知识去探究和解决问题,并更多地关注学生自主探究、与他人合作的愿望和能力。
  三、关于镶嵌
  1.     镶嵌,作为数学学习的一项探究性活动,主要有以下两个方面的原因:
  如果用“数学的眼光”观察事物,那么用正方形的地砖铺地,就是“正方形”这种几何图形可以无缝隙、不重叠地拼合。
  “几何“中研究图形性质时,也常常要把图形拼合。比如,两个全等的直角三角形可以拼合成一个等腰三角形,或一个矩形,或一个平行四边形;又如,六个全等的等边三角形可以拼合成一个正六边形,四个全等的等边三角形可以拼合成一个较大的等边三角形等。
  2.     各种平面图形能作“平面镶嵌”的必备条件,是图形拼合后同一个顶点的若干个角的和恰好等于360°。
  用同一种正多边形镶嵌,只要正多边形内角的度数整除360°,这种正多边形就能作平面镶嵌。比如正三角形、正方形、正六边形能作平面镶嵌,而正五边形、正七边形、正八边形、正九边形、……的内角的度数都不能整除360°,所以这些正多边形都不能镶嵌。
  用两种或三种正多边形镶嵌,可参见有关资料内容。
  用一种任意的凸多边形镶嵌。
  从正多边形镶嵌中可以知道:只要研究任意的三角形、四边形、六边形能否作平面镶嵌,而不必考虑其他多边形能否镶嵌(这是因为:假如这类多边形能作镶嵌,那么这类正多边形必能作镶嵌,这与上面研究的结论矛盾)

 点此下载传统下载搜索更多相关资源
  • 说明:“点此下载”为无刷新无重复下载提示方式;“传统下载”为打开新页面进行下载,有重复下载提示。
  • 提示:非零点资源点击后将会扣点,不确认下载请勿点击。
  • 我要评价有奖报错加入收藏下载帮助

下载说明:

  • 没有确认下载前请不要点击“点此下载”、“传统下载”,点击后将会启动下载程序并扣除相应点数。
  • 如果资源不能正常使用或下载请点击有奖报错,报错证实将补点并奖励!
  • 为确保所下资源能正常使用,请使用[WinRAR v3.8]或以上版本解压本站资源。
  • 站内部分资源并非原创,若无意中侵犯到您的权利,敬请来信联系我们。

资源评论

共有 0位用户发表了评论 查看完整内容我要评价此资源