江苏省南京市2010届高三数学考前训练卷
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
共21道小题,约10110字。
江苏省南京市2010届高三数学考前训练卷
1.定义:在数列{an}中,若an2-an-12=p,(n≥2,n∈N*,p为常数),则称{an}为“等方差数列”.下列是对“等方差数列”的有关判断:
①若{an}是“等方差数列”,则数列{an2}是等差数列;
②{(-1)n}是“等方差数列”;
③若{an}是“等方差数列”,则数列{akn}(k∈N*,k为常数)也是“等方差数列”;
④若{an}既是“等方差数列”,又是等差数列,则该数列是常数数列.
其中判断正确的序号是 .
2.已知向量a=(sinθ,-2)与b=(1,cosθ)互相垂直,其中θ∈(0,π2).
(1)求sinθ和cosθ的值;
(2)若sin(θ-)=1010,0<<π2,求的值.
3.在△ABC中,角A,B,C的对边分别为a,b,c,B=π3,cosA=45,b=3.
(1)求sinC的值;
(2)求△ABC的面积.
4.在△ABC中,角A、B、C的对边分别是a、b、c,已知c=2,C=π3.
(1)若△ABC的面积等于3,求a,b的值;
(2)若sinC+sin(B-A)=2sin2A,求角A的大小.
5.在△ABC中,角A,B,C的对边分别是a,b,c,且A,B,C成等差数列.
(1)若AB→•BC→=-32,b=3,求a+c的值;
(2)求2sinA-sinC的取值范围.
6.如图1所示,在边长为12的正方形AA'A1'A1中,点B,C在线段AA'上,且AB=3,BC=4,作BB1//AA1,分别交A1A1'、AA1'于点B1、P,作CC1//AA1,分别交A1A1'、AA1'于点C1、Q,将该正方形沿BB1、CC1折叠,使得A'A1'与AA1重合,构成如图2所示的三棱柱ABC-A1B1C1.
(1)在三棱柱ABC-A1B1C1中,求证:AB⊥平面BCC1B1;
(2)求平面APQ将三棱柱ABC-A1B1C1分成上、下两部分几何体的体积之比.
7.如图,在四棱锥P-ABCD中,CD∥AB,ADAB,AD=DC=12AB,BCPC.
(1)求证:PABC;
(2)试在线段PB上找一点M,使CM∥平面PAD,并说明理由.
8.如图所示,两个全等的正方体ABCD-A1B1C1D1,CRST-C1R1S1T1有一条公共的棱CC1,且平面BCC1B1与平面CTT1C1在同一平面内,平面CDD1C1与平面CRR1C1在同一平面内,P、Q分别是棱B1C1、CC1的中点.
(1)求证:PQ⊥平面CRS1T1;
(2)求证:B1D∥平面BTS1R1.
9.如图,底面为菱形的直四棱柱ABCD-A1B1C1D1中,E、F分别为A1B1、B1C1的中点,G为DF的中点.
(1)求证:EF⊥平面B1BDD1;
(2)过A1、E、G三点平面交DD1于H,求证:EG∥A1H.
10.在平面直角坐标系xOy中,点P是坐标为(0,1),直线l1的方程为y=-1.
(1)若动圆C过点P且与直线l1相切,求动圆圆心C的轨迹方程;
(2)设A(0,a)(a>2)为y轴上的动点,B是(1)中所求轨迹上距离A点最近的点,求证:以AB为直径的圆在y轴上截得的弦长为定值,并求此定值.
11.已知椭圆x2a2+y2b2=1(a>b>0)的上顶点为A(0,3),左、右焦点分别为B、C,离心率为12.
(1)试求椭圆的标准方程;
(2)若直线PC的倾斜角为α,直线PB的倾斜角为β,当β-α=2π3时,
求证:①点P一定在经过A,B,上;
②PA=PB+PC.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源