2010年中考数学专题复习——综合型问题
- 资源简介:
约4720字。
2010年中考数学专题复习——综合型问题
类型之一 代数类型的综合题
代数综合题是指以代数知识为主的或以代数变形技巧为主的一类综合题.主要包括方程、函数、不等式等内容,用到的数学思想方法有化归思想、分类思想、数形结合思想以及代人法、待定系数法等.解代数综合题要注意各知识点之间的联系和数学思想方法、解题技巧的灵活运用,要抓住题意,化整为零,层层深人,各个击破.
例1.(•安徽省)刚回营地的两个抢险分队又接到救灾命令:一分队立即出发往30千米的A镇;二分队因疲劳可在营地休息a(0≤a≤3)小时再往A镇参加救灾。一分队出发后得知,唯一通往A镇的道路在离营地10千米处发生塌方,塌方地形复杂,必须由一分队用1小时打通道路,已知一分队的行进速度为5千米/时,二分队的行进速度为(4+a)千米/时。⑴若二分队在营地不休息,问二分队几小时能赶到A镇?⑵若二分队和一分队同时赶到A镇,二分队应在营地休息几小时?⑶下列图象中,①②分别描述一分队和二分队离A镇的距离y(千米)和时间x(小时)的函数关系,请写出你认为所有可能合理的代号,并说明它们的实际意义。
1.【解析】本题是一道包含着分类思想的应用综合应用题。解题前先认真阅读弄清题意,把握好时间信息,二分队在营地不休息,几小时能赶到A镇,途中考虑到在塌方地点的停留,解题时不能忽视;在考虑图像时,同样也要分不同的情况去研究。
【答案】解:(1)若二分队在营地不休息,则a=0,速度为4千米/时,行至塌方处需 (小时)
因为一分队到塌方处并打通道路需要 (小时),故二分队在塌方处需停留0.5小时,所以二分队在营地不休息赶到A镇需2.5+0.5+ =8(小时)
(2)一分队赶到A镇共需 +1=7(小时)
(Ⅰ)若二分队在塌方处需停留,则后20千米需与一分队同行,故4+a=5,即a=1,这与二分队在塌方处停留矛盾,舍去;
(Ⅱ)若二分队在塌方处不停留,则(4+a)(7-a)=30,即a2-3a+2=0,,解得a1=1,a2=2均符合题意。
答:二分队应在营地休息1小时或2小时。(其他解法只要合理即给分)
(3)合理的图像为(b)、(d)
图像(b)表明二分队在营地休息时间过长(2<a≤3),后于一分队赶到A镇;
图像(d)表明二分队在营地休息时间恰当(1<a≤2),先于一分队赶到A镇。
同步测试:
1.(•沈阳市)一辆经营长途运输的货车在高速公路的A处加满油后,以每小时80千米的速度匀速行驶,前往与A处相距636千米的B地,下表记录的是货车一次加满油后油箱内余油量y(升)与行驶时间x(时)之间的关系:
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源