《三角形内角和定理》教学设计
- 资源简介:
约1650字。
教学过程 设计说明
我们在七年级曾经把一个三角形的三个内角撕下来拼在一起得到一个平角,由此得到三角形的内角和是180°。
教师指出:这只是实验得出的命题,不能当做定理,只有经过严格的几何证明,证明命题的正确性,才能作为几何定理,今后,在几何里,常采用这种方法得到新知识。
那么如何证明此命题是真命题呢?能否用学过的旧知识作平行线,利用平行线的性质来证明呢?
从学过的知识引入符合学生的认知规律,且小学已知三角形三个内角和是180°。
学生回忆证明一个命题的步骤:
①画图
②分析命题的题设和结论,写出已知求证,把文字语言转化为几何语言。
③分析、探究证明方法。
有本章前面几节作为基础,学生有能力画图,写已知,求证。
教师引导:要证三角形三个内角和是180°,观察图形,三个角间没什么关系,能不能象前面那样,把这三个角拼在一起呢?拼成什么样的角呢?
学生思考与180°有关的角后回答,可拼成:①平角,②两平行线间的同旁内角。教师引导,要把三角形三个内角转化为上述两种角,就要在原图形上添加一些线,这些线叫做辅助线,在平面几何里,辅助线常画成虚线,添辅助线是解决问题的重要思想方法。如何把三个角转化为平角或两平行线间的同旁内角呢?下面同学们利用准备好的三角形纸片拼一拼,画一画。
学生通过自主探究,可以得出以下几种辅助线的作法:
① 如图1,延长BC得到一平角∠BCD,然后以CA为一边,在△ABC的外部画∠1=∠A。
② 如图1,延长BC,过C作CE∥AB
③ 如图2,过A作DE∥AB
④ 如图3,过C作CD∥AB。
资源评论
{$comment}