2.1.1 数列的概念与简单表示法(一).doc
2.2.1 等差数列的概念、等差数列的通项公式.doc
2.2.2 等差数列通项公式.doc
2.3.1 等差数列的前n项和(一).doc
2.3.2 等差数列的前n项和(二).doc
2.4.1 等比数列的概念及通项公式.doc
2.4.2 等比数列的基本性质及其应用.doc
2.5.1 等比数列前n项和公式的推导与应用.doc
2.5.2 求数列前n项和知识的运用.doc
备课资料1.doc
备课资料2.doc
备课资料3.doc
备课资料4.doc
备课资料5.doc
备课资料6.doc
备课资料7.doc
备课资料8.doc
备课资料9.doc
本章复习(二).doc
本章复习(一).doc
习题详解1.doc
习题详解2.doc
习题详解3.doc
2.1 数列的概念与简单表示法
2.1.1 数列的概念与简单表示法(一)
从容说课
本节课先由教师提供日常生活实例,引导学生通过对实例的分析体会数列的有关概念,再通过对数列的项数与项之间的对应关系的探究,认识数列是一种特殊的函数,最后师生共同通过对一列数的观察、归纳,写出符合条件的一个通项公式.通过本节课的学习使学生能理解数列及其有关概念,了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项写出它的通项公式.
教学重点 数列及其有关概念,通项公式及其应用.
教学难点 根据一些数列的前几项抽象、归纳数列的通项公式.
教具准备 课件
三维目标
一、知识与技能
1.理解数列及其有关概念,了解数列和函数之间的关系;
2.了解数列的通项公式,并会用通项公式写出数列的任意一项;
3.对于比较简单的数列,会根据其前几项写出它的通项公式.
二、过程与方法
1.采用探究法,按照思考、交流、实验、观察、分析、得出结论的方法进行启发式教学;
2.发挥学生的主体作用,作好探究性学习;
3.理论联系实际,激发学生的学习积极性.
三、情感态度与价值观
1.通过日常生活中的大量实例,鼓励学生动手试验.理论联系实际,激发学生对科学的探究精神和严肃认真的科学态度,培养学生的辩证唯物主义观点;
2.通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣.
教学过程
导入新课
师 课本图211中的正方形数分别是多少?
生 1,3,6,10,….
师 图212中正方形数呢?
生 1,4,9,16,25,….
师 像这样按一定次序排列的一列数你能否再举一些?
生 -1的正整数次幂:-1,1,-1,1,…;
无穷多个数排成一列数:1,1,1,1,….
生 一些分数排成的一列数:,,,,,….
推进新课
[合作探究]
折纸问题
师 请同学们想一想,一张纸可以重复对折多少次?请同学们随便取一张纸试试(学生们兴趣一定很浓).
生 一般折5、6次就不能折下去了,厚度太高了.
师 你知道这是为什么吗?我们设纸原来的厚度为1长度单位,面积为1面积单位,随依次折的次数,它的厚度和每层纸的面积依次怎样?
生 随着对折数厚度依次为:2,4,8,16,…,256,…;①
随着对折数面积依次为, , , ,…, ,….
生 对折8次以后,纸的厚度为原来的256倍,其面积为原来的分 1[]256式,再折下去太困难了.
师 说得很好,随数学水平的提高,我们的思维会更加理性化.请同学们观察上面我们列出的这一列一列的数,看它们有何共同特点?
生 均是一列数.
生 还有一定次序.
师 它们的共同特点:都是有一定次序的一列数.
[教师精讲]
1.数列的定义:按一定顺序排列着的一列数叫做数列.
注意:
(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;
(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.
2.数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首项),第2项,…,第n项,….同学们能举例说明吗?
生 例如,上述例子均是数列,其中①中,“2”是这个数列的第1项(或首项),“16”是这个数列中的第4项.
3.数列的分类:
1)根据数列项数的多少分:
有穷数列:项数有限的数列.例如数列1,2,3,4,5,6是有穷数列.
无穷数列:项数无限的数列.例如数列1,2,3,4,5,6…是无穷数列.
2)根据数列项的大小分:
递增数列:从第2项起,每一项都不小于它的前一项的数列.
递减数列:从第2项起,每一项都不大于它的前一项的数列.
常数数列:各项相等的数列.
摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列.
请同学们观察:课本P 33的六组数列,哪些是递增数列、递减数列、常数数列、摆动数列?
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源