约8420字。
1.1 同位角 内错角 同旁内角
〖教学目标〗
◆1、了解同位角、内错角、同旁内角的意义。
◆2、会在简单的图形中辨认同位角、内错角、同旁内角。
◆3、会在给定某个条件下进行有关同位角、内错角、同旁内角的判定和计算。
〖教学重点与难点〗
◆教学重点:同位角、内错角、同旁内角的概念。
◆教学难点:各对关系角的辨认,复杂图形的辨认是本节教学的难点。
〖教学过程〗
一. 引入:中国最早的风筝据说是由古代哲学家墨翟制作的,风筝的骨架构成了多种关系的角。
这就是我们这节课要讨论的问题:两条直线和第三条直线相交的关系。
二.接受新的挑战:
讨论:两条直线和第三条直线相交的关系
如图:两条直线a1 , a2和第三条直线a3相交。(或者说:直线 a1 , a2 被直线 a3 所截)
其中直线 a1 与直线 a3 相交构成四个角,直线 a2 与直线 a3 相交构成四个角。所以这个问题我们经常就叫它“三线八角”问题。
三.了解 “三线八角”:
如图:直线 a1 , a2 被直线 a3 所截,构成了八个角。
1. 观察∠ 1与∠5的位置:它们都在第三条直线 a3 的同旁,并且分别位于直线 a1 , a2 的相同一侧,这样的一对角叫做“同位角”。
类似位置关系的角在图中还有吗?如果有,请找出来?
2. 观察∠ 3与∠5的位置:它们都在第三条直线 a3 的异侧,并且都位于两条直线 a1 , a2 之间,这样的一对角叫做“内错角”。
类似位置关系的角在图中还有吗?如果有,请找出来?
3. 观察∠ 2与∠5的位置:它们都在第三条直线 a3 的同旁,并且都位于两条直线 a1 , a2 之间,这样的一对角叫做“同旁内角”。
四. 知识整理:
问题1.你觉得应该按怎样的步骤在“三线八角”中确定关系角?
确定前提(三线) 寻找构成的角(八角) 确定构成角中的关系角
问题2:在下面同位角、内错角、同旁内角中任选一对,请你看看这对角的四条边与“前提”中的“三线”有什么关系?
结论:两个角的在同一直线上的边所在直线就是前提中的第三线。
五.试试身手:
例1:如图:请指出图中的同旁内角。(提示:请仔细读题、认真看图。)
答: ∠1与∠5; ∠4与∠6; ∠1与∠A; ∠5与∠A
合作学习:请找出以上各对关系角成立时的其余各对关系角。
1. 其中:∠1与∠5 ;∠4与∠6是直线 和直线 被直线 所截得到的同旁内角。此时三线构成了 个角。此时,同位角有: ,内错角有: 。
2.其中: ∠1与∠A是直线 和直线 被直线 所截得到的同旁内角。此时三线构成了 个角。此时,同位角有: ,
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源