约1220字。
《线段的比》教案
新授 课时 1 授课时间
1、结合现实情境了解线段的比和成比例线段。
2、理解并掌握比例的性质及其简单应用。
通过现实情境,进一步发展学生从数学的角度提出问题、分析问题和解决问题的能力,培养学生的数学应用意识,体会教学与自然、社会的密切联系
培养学生学习数学的兴趣及理论联系实际的能力
线段比的概念及其求解
自学与点拨相结合
本节通过具体问题的情境,使学生认识线段的比和成比例线段等概念,并利用引入比值k的方法研究比例的主要性质,为后续学习奠定基础
教师活动 教学内容
1、 新课引入
创设一个恰当的问题情境,促进学生自觉地认识现实中的比例模型,在解决问题的氛围中了解线段的比
引入比值k 的方法是 解决比例问题的一种重要方法,事实上,利用这种方法,可以很方便地推导出比例的性质
通过本例与学生一起探讨线段比的应用:在已知比例尺(线段比的情况下,知道图上长度可求实际长度;求法类似解分式方程。 利用powerpoint打出图片,并结合图片给出问题:(1)如果把大树和小颖的高分别看成如图4 -1所示的两条虚线段AB,CD,那么这两条线段的长度比是多少?
(2)已知小颖的身高是1.6m,大树的实际高度是多少?
两条线段长度的比与所采用的长度单有没有关系?
通过思考、交流,引导学生得出:线段的长度比与所采用的长度单位无关
如果选用一个长度单位量得两条线段AB,CD的长度分别是m、n,那么就说这两条线段的比AB::n,或写成 = .其中,线段AB:CD分别叫做这个线段比的前项和后项.如果把 表示成比值k,那么 =k,或AB=k•CD
此处对线段比的前项、后项概念作进一步解析。
例1在某市城区地图(比例尺1:9000)上,新安大街的图上长度与光华大街的图上长度分别是16cm,10cm.
(1)新安大街与光华大街的实际长度各是多少米?
(2)新安大街与光华大街的图上长度之比是多少?它们的实际长度之比呢?
解:(1)根据题意,得
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源