约4610字。
《因式分解复习课》教案
新课指南
1.知识与技能:掌握运用提公因式法、公式法、分组分解法分解因式,及形如x2+(p+q)x+pq的多项式因式分解,培养学生应用因式分解解决问题的能力.
2.过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法.
3.情感态度与价值观:通过因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,并体会整体数学思想和转化的数学思想.
4.重点与难点:重点是用提公因式法和公式法分解因式.难点是分组分解法和形如x2+(p+q)x+pq的多项式的因式分解.
教材解读 精华要义
数学与生活
630能被哪些数整除?说说你是怎么想的.
思考讨论 在小学我们知道,要想解决这个问题,需要把630分解成质数的乘积的形式,即630=2×32×5×7.
类似地,在整式的变形中,有时需要将一个多项式写成几个整式的乘积的形式,这种变形就是因式分解.那么如何进行因式分解呢?
知识详解
知识点1 因式分解的定义
把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.
【说明】 (1)因式分解与整式乘法是相反方向的变形,即互逆的运算.
例如:
(2)因式分解是恒等变形,因此可以用整式乘法来检验.
知识点2 提公因式法
多项式ma+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式.ma+mb+m(a+b+a+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+a+mb+m所得的商,像这种分解因式的方法叫做提公因式法.
例如:x2-x=x(x-1),8a2b-4ab+2a=2a(4ab-2b+1).
探究交流
下列变形是否是因式分解?为什么,
(1)3x2y-xy+y=y(3x2-x);
(2)x2-2x+3=(x-1)2+2;
(3)x2y2+2xy-1=(xy+1)(xy-1);
(4)xn(x2-x+1)=xn+2-xn+1+xn.
点拨 (1)不是因式分解,提公因式错误,可以用整式乘法检验其真伪.
(2)不是因式分解,不满足因式分解的含义
(3)不是因式分解,因为因式分解是恒等变形而本题不恒等.
(4)不是因式分解,是整式乘法.
知识点3 公式法
(1)平方差公式:a2-b2=(a+b)(a-b).
即两个数的平方差,等于这两个数的和与这个数的差的积.
例如:4x2-9=(2x)2-32=(2x+3)(2x-3).
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源