约7390字 课题: §3.3.1二元一次不等式(组)与平面区域
第1课时
授课类型:新授课
【教学目标】
1.知识与技能:了解二元一次不等式的几何意义,会用二元一次不等式组表示平面区域;
2.过程与方法:经历从实际情境中抽象出二元一次不等式组的过程,提高数学建模的能力;
3.情态与价值:通过本节课的学习,体会数学来源与生活,提高数学学习兴趣
【教学重点】
用二元一次不等式(组)表示平面区域;
【教学难点】
【教学过程】
1.课题导入
1.从实际问题中抽象出二元一次不等式(组)的数学模型
课本第91页的“银行信贷资金分配问题”
教师引导学生思考、探究,让学生经历建立线性规划模型的过程。
在获得探究体验的基础上,通过交流形成共识:
2.讲授新课
1.建立二元一次不等式模型
把实际问题 数学问题:
设用于企业贷款的资金为x元,用于个人贷款的资金为y元。
(把文字语言 符号语言)
(资金总数为25 000 000元) (1)
(预计企业贷款创收12%,个人贷款创收10%,共创收30 000元以上) 即 (2)
(用于企业和个人贷款的资金数额都不能是负值) (3)
将(1)(2)(3)合在一起,得到分配资金应满足的条件:
2.二元一次不等式和二元一次不等式组的定义
(1)二元一次不等式:含有两个未知数,并且未知数的最高次数是1的不等式叫做二元一次不等式。
(2)二元一次不等式组:有几个二元一次不等式组成的不等式组称为二元一次不等式组。
(3)二元一次不等式(组)的解集:满足二元一次不等式(组)的x和y的取值构成有序实数对(x,y),所有这样的有序实数对(x,y)构成的集合称为二元一次不等式(组)的解集。
(4)二元一次不等式(组)的解集与平面直角坐标系内的点之间的关系:
二元一次不等式(组)的解集是有序实数对,而点的坐标也是有序实数对,因此,有序实数对就可以看成是平面内点的坐标,进而,二元一次不等式(组)的解集就可以看成是直角坐标系内的点构成的集合。
3.探究二元一次不等式(组)的解集表示的图形
(1)回忆、思考
回忆:初中一元一次不等式(组)的解集所表示的图形——数轴上的区间
思考:在直角坐标系内,二元一次不等式(组)的解集表示什么图形?
(2)探究
从特殊到一般:
先研究具体的二元一次不等式x-y<6的解集所表示的图形。
如图:在平面直角坐标系内,x-y=6表示一条直线。平面内所有的点被直线分成三类:
第一类:在直线x-y=6上的点;
第二类:在直线x-y=6左上方的区域内的点;
第三类:在直线x-y=6右下方的区域内的点。
设点是直线x-y=6上的点,选取点,使它的坐标满足不等式x-y<6,请同学们完成课本第93页的表格,
横坐标x -3 -2 -1 0 1 2 3
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源