2009年高考数学试题分类汇编——不等式试题
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
约4200字 2009年高考数学试题分类汇编——不等式
一、选择题
1.(2009安徽卷理)下列选项中,p是q的必要不充分条件的是
(A)p:>b+d , q:>b且c>d
(B)p:a>1,b>1 q:的图像不过第二象限
(C)p: x=1, q:
(D)p:a>1, q: 在上为增函数
[解析]:由>b且c>d>b+d,而由>b+d >b且c>d,可举反例。选A
2.(2009山东卷理)设x,y满足约束条件 ,
若目标函数z=ax+by(a>0,b>0)的值是最大值为12,
则的最小值为( ).
A. B. C. D. 4
【解析】:不等式表示的平面区域如图所示阴影部分,当直线ax+by= z(a>0,b>0)
过直线x-y+2=0与直线3x-y-6=0的交点(4,6)时,
目标函数z=ax+by(a>0,b>0)取得最大12,
即4a+6b=12,即2a+3b=6, 而=,故选A.
答案:A
【命题立意】:本题综合地考查了线性规划问题和由基本不等式求函数的最值问题.要求能准确地画出不等式表示的平面区域,并且能够求得目标函数的最值,对于形如已知2a+3b=6,求的最小值常用乘积进而用基本不等式解答.
3.(2009安徽卷理)若不等式组所表示的平面区域被直线分为面积相等的两部分,则的值是
(A) (B) (C) (D)
[解析]:不等式表示的平面区域如图所示阴影部分△ABC
由得A(1,1),又B(0,4),C(0,)
∴△ABC=,设与的
交点为D,则由知,∴
∴选A。
4.(2009安徽卷文)不等式组所表示的平面区域的面积等于
A. B.
C. D.
【解析】由可得,故阴 =,选C。
【答案】C
5.(2009安徽卷文)“”是“且”的
A. 必要不充分条件 B. 充分不必要条件
C. 充分必要条件 D. 既不充分也不必要条件
【解析】易得时必有.若时,则可能有,选A。
【答案】A
6.(2009四川卷文)已知,,,为实数,且>.则“>”是“->-”的
A. 充分而不必要条件 B. 必要而不充分条件
C. 充要条件 D. 既不充分也不必要条件
【答案】B
【解析】显然,充分性不成立.又,若->-和>都成立,则同向不等式相加得>
即由“->-”“>”
7.(2009四川卷文)某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元。该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨.那么该企业可获得最大利润是
A. 12万元 B. 20万元 C. 25万元 D. 27万元
【答案】D
【解析】设生产甲产品吨,生产乙产品吨,则有关系:
A原料 B原料
甲产品吨 3 2
乙产品吨 3
则有:
目标函数
作出可行域后求出可行域边界上各端点的坐标,经验证知:
当=3,=5时可获得最大利润为27万元,故选D
8.(2009湖南卷文)若,则的最小值为 .
解: ,当且仅当时取等号.
9.(2009宁夏海南卷理)设x,y满足
(A)有最小值2,最大值3 (B)有最小值2,无最大值
(C)有最大值3,无最小值 (D)既无最小值,也无最大值
解析:画出可行域可知,当过点(2,0)时,,但无最大值。选B.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源