\14
第14课时 二次函数的综合应用.ppt
第14课时.doc
第14课时练习.doc
第14课时二次函数的综合应用
命题点1二次函数的实际应用(郴州2016.21)
1.(2016郴州21题8分)某商店原来平均每天可销售某种水果200千克,每千克可盈利6元.为减少库存,经市场调查,如果这种水果每千克降价1元,则每天可多售出20千克.
(1)设每千克水果降价x元,平均每天盈利y元,试写出y关于x的函数表达式;
(2)若要平均每天盈利960元,则每千克应降价多少元?
2.(2015邵阳23题8分)为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(件)与销售单价x(元)满足一次函数关系:y=-10x+1200.
(1)求出利润S(元)与销售单价x(元)之间的关系式;(利润=销售额-成本)
(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?
命题点2二次函数与几何图形综合题(必考)
3.(2016益阳21题12分)如图,顶点为的抛物线经过坐标原点O,与x轴交于点B.
(1)求抛物线对应的二次函数的表达式;
(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;第3题图
(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.
4.(2015岳阳24题10分)如图,抛物线y=ax2+bx+c经过A(1,0)、B(4,0)、
C(0,3)三点.
(1)求抛物线的解析式;
第三单元函数
第14课时 二次函数的综合应用
时间:50(分钟)
类型一二次函数的实际应用
1. (2017泰州)怡然美食店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.
(1)该店每天卖出这两种菜品共多少份?
(2)该店为了增加利润,准备降低A种菜品售价,同时提高B种菜品售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份.如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?
2.(2017成都)随着地铁和共享单车的发展.“地铁+单车”已成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫的距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:
(1)求y1关于x的函数表达式;
(2)李华骑单车的时间y2(单位:分钟)也受x的影响,其关系可以用y2= x2-11x+78来描述.请问:李华应选择在哪一站出地铁,才能使他从文化宫站回到家所需要的时间最短?并求出最短时间.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源