2016-2017学年高中数学必修二模块综合测评卷1
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
共22道小题,约5740字。
模块综合测评
(时间120分钟,满分150分)
一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.过点A(3,-4),B(-2,m)的直线l的斜率为-2,则m的值为( )
A.6 B.1
C.2 D.4
【解析】 由题意知kAB=m+4-2-3=-2,∴m=6.
【答案】 A
2.在x轴、y轴上的截距分别是-2、3的直线方程是( )
A.2x-3y-6=0 B.3x-2y-6=0
C.3x-2y+6=0 D.2x-3y+6=0
【解析】 由直线的截距式得,所求直线的方程为x-2+y3=1,即3x-2y+6=0.
【答案】 C
3.已知正方体外接球的体积是323π,那么正方体的棱长等于( )
A.22 B.223
C.423 D.433
【解析】 设正方体的棱长为a,球的半径为R,则43πR3=323π,∴R=2.又∵3a=2R=4,∴a=433.
【答案】 D
4.关于空间直角坐标系Oxyz中的一点P(1,2,3)有下列说法:
①点P到坐标原点的距离为13;
②OP的中点坐标为12,1,32;
③与点P关于x轴对称的点的坐标为(-1,-2,-3);
④与点P关于坐标原点对称的点的坐标为(1,2,-3);
⑤与点P关于坐标平面xOy对称的点的坐标为(1,2,-3).
其中正确的个数是( )
A.2 B.3
C.4 D.5
【解析】 点P到坐标原点的距离为12+22+32=14,故①错;②正确;与点P关于x轴对称的点的坐标为(1,-2,-3),故③错;与点P关于坐标原点对称的点的坐标为(-1,-2,-3),故④错;⑤正确,故选A.
【答案】 A
5.如图1,在长方体ABCD-A1B1C1D1中,M、N分别是棱BB1、B1C1的中点,若∠CMN=90°,则异面直线AD1和DM所成角为( )
图1
A.30° B.45°
C.60° D.90°
【解析】 因为MN⊥DC,MN⊥MC,
所以MN⊥平面DCM.
所以MN⊥DM.
因为MN∥AD1,所以AD1⊥DM.
【答案】 D
6.(2015•福建高考)某几何体的三视图如图2所示,则该几何体的表面积等于( )
图2
A.8+22 B.11+22
C.14+22 D.15
【解析】 由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.
直角梯形斜腰长为12+12=2,所以底面周长为4+2,侧面积为2×(4+2)=8+22,两底面的面积和为2×12×1×(1+2)=3,所以该几何体的表面积为8+22+3=11+22.
【答案】 B
7.已知圆x2+y2+2x+2y+k=0和定点P(1,-1),若过点P的圆的切线有两条,则k的取值范围是( )
A.(-2,+∞) B.(-∞,2)
C.(-2,2) D.(-∞,-2)∪(2,+∞)
【解析】 因为方程x2+y2+2x+2y+k=0表示一个圆,所以 4+4-4k>0,所以k<2.由题意知点P(1,-1)在圆外,所以12+(-1)2+2×1+2×(-1)+k>0,解得k>-2,所以-2<k<2.
【答案】 C
8.在三棱柱ABC-A1B1C1中,各棱长相等,侧棱垂直于底面,点D是侧面BB1C1C的中心,则AD与平面BB1C1C所成角的大小是( )
A.30° B.45°
C.60° D.90°
【解析】 如图,取BC的中点E,连接DE、AE、AD.依题设知AE⊥平面BB1C1C.故∠ADE为AD与平面BB1C1C所成的角.设各棱长为2,则AE=32×2=3,DE=1.
∵tan∠ADE=AEDE=31=3,
∴∠ADE=60°,故选C.
【答案】 C
9.(2015•开封高一检测)若m、n为两条不重合的直线,α、β为两个不重合的平面,则下列说法中正确的是( )
①若直线m、n都平行于平面α,则m、n一定不是相交直线;
②若直线m、n都垂直于平面α,则m、n一定是平行直线;
③已知平面α、β互相垂直,且直线m、n也互相垂直,若m⊥α,则n⊥β;
④若直线m、n在平面α内的射影互相垂直,则m⊥n.
A.② B.②③
C.①③ D.②④
【解析】 对于①,m与n可能平行,可能相交,也可能异面;
对于②,由线面垂直的性质定理可知,m与n一定平行,故②正确;
对于③,还有可能n∥β;对于④,把m,n放入正方体中,如图,取A1B为m,B1C为n,平面ABCD为平面α,则m与n在α内的射影分别为AB与BC,且AB⊥BC.而m与n所成的角为60°,故④错.因此选A.
【答案】 A
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源