《单位圆与诱导公式》学案
- 资源简介:
约1630字。
第4课时 单位圆与诱导公式
1.借助单位圆,利用点的对称性推导出“-α,π+α,π-α,α+ ”的诱导公式,并会应用公式求任意角的三角函数值.
2.会应用公式进行简单的三角函数的化简与求值.
3.通过公式的运用,学会从未知到已知,复杂到简单的转化方法.
我们已经学习了任意角的正弦、余弦函数的定义,以及终边相同的角的正弦、余弦函数值也相等,即sin(2kπ+α)=sin α(k∈Z)与cos(2kπ+α)=cos α(k∈Z),公式体现了求任意角的正弦、余弦函数值转化为求0°~360°的角的正弦、余弦函数值,那么我们能否将0°~360°间的角的正弦、余弦函数值转化为锐角的正弦、余弦函数值呢?
问题1:将任意角转化成0°~360°间的角的几种情况
因为任意角都可以通过终边相同的角转化成0°~360°间的角,对于任意0°~360°的角β,只有四种可能(其中α为锐角),则有
β=
问题2:(1)角α与-α的正弦函数、余弦函数关系
如图,在单位圆中对任意角∠MOP=α,作∠MOP'=-α,这两个角的终边与单位圆的交点分别为P和P',可知OP与OP'关于 轴对称,设P点的坐标为(a,b),则点P'的坐标为(a,-b),所以sin(-α)=-b,cos α=a.即sin(-α)= ,cos(-α)= .
(2)角α与α±π的正弦函数、余弦函数关系
如图,在直角坐标系的单位圆中,对任意角∠MOP=α,其终边与单位圆的交点为P,当点P按逆(顺)时针方向旋转π至点P'时,点P'的坐标为:(cos(α+π),sin(α+π))或(cos(α-π),sin(α-π)),此时点P与点P'关于原点对称,横、纵坐标都互为 ,故sin(α+π)= ,cos(α+π)= ;sin(α-π)= ,cos(α-π)= .
(3)角α与π-α的正弦函数、余弦函数关系
如图,在单位圆中,当∠MOP=α是锐角时,作∠MOP'=π-α,不难看出,点P和点P'关于y轴对称,则有sin(π-α)= ,
cos(π-α)= .
(4)角α与 +α的正弦函数、余弦函数关系
在单位圆中,仿照上面的方法,可以得出,sin(α+ )= ,cos(α+ )= .
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源