《圆柱、圆锥、圆台和球》教案
- 资源简介:
约1410字。
圆柱、圆锥、圆台和球
教学目标:1、理解球面、球体和组合体的基本概念,
2、掌握球的截面的性质,
3、掌握球面距离的概念.
教学重点:球的截面的性质及应用,会求球面上两点之间的距离
教学过程:
复习引入
1、圆柱、圆锥、圆台,它们分 别由矩形、直角三角形、直角梯形旋转而成的。
2、通过篮球、排球、足球等等球体的形象引出课题.
新授
1、球的概念:球也可以由一个平面图形旋转得到。半圆以它的直径为旋转轴,旋转所成的曲面叫球面。球面所围成的几何体叫球体,简称球。指出球心、半径、直径。值得注意的是:
1)球面与球体是两个不同的概念,我们要注意它们的区别与联系。
2)球面的概念可以用集合的观点来描述。球面是由点组成的,球面上的点有什么共同的特点呢?与定点的距离等于定长的所有点的集合(轨迹)叫球面。如果点到球心的距 离小于 球的半径,这样的点在球的内部.
否则在外部.
3)球的表示:用表示球心的字母表示球,比如,球O.
2、球的截面的性质:用一个平面去截球,得到一个截面,截面是圆面,把过球心的截面圆叫大圆,不过球心的截面圆叫小圆.
球的截面有什么性质呢?连接球心与截面圆心,连线OO1与截面圆O1会有什么关系呢?
1) 球心与截面圆心的连线垂直于截面。
2) 设球心到截面的距离为d,截面圆的半径为r,球的半径为R,则:r=
3、练习一:
判断正误:(对的打√,错的打×)
(1)半圆以其直径为轴旋转所成的曲面叫球。( )
(2)到定点的距离等于定长的所有点的集合叫球。( )
(3)球的小圆的 圆心与球心的连线垂直于 这个小圆所在平面。( )
(4)经过球面上不同的两点只能作一个大圆。( )
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源