2013年全国各地中考数学试卷分类汇编:图形的相似与位似

  • 手机网页: 浏览手机版
  • 资源类别: 通用 / 初中试卷 / 中考专项试卷
  • 文件类型: doc
  • 资源大小: 567 KB
  • 资源评级:
  • 更新时间: 2013/7/20 21:55:28
  • 资源来源: 会员转发
  • 下载情况: 本月:获取中 总计:获取中
  • 下载点数: 获取中 下载点  如何增加下载点
  •  点此下载传统下载

资源简介:

  此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。

约15820字。

  图形的相似与位似
  一.选择题
  1.(2013湖北孝感,9,3分)在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,相似比为,把△EFO缩小,则点E的对应点E′的坐标是(  )
  A. (﹣2,1) B. (﹣8,4) C. (﹣8,4)或(8,﹣4) D. (﹣2,1)或(2,﹣1)
  考点: 位似变换;坐标与图形性质.
  专题: 作图题.
  分析: 根据题意画出相应的图形,找出点E的对应点E′的坐标即可.
  解答: 解:根据题意得:
  则点E的对应点E′的坐标是(﹣2,1)或(2,﹣1).
  故选D.
  点评: 此题考查了位似图形,以及坐标与图形性质,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.
  2.(2013湖北孝感,12,3分)如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于(  )
  A.   B.   C.   D. 
  考点: 相似三角形的判定与性质;等腰三角形的判定与性质.
  分析: 依次判定△ABC∽△BDC∽△CDE∽△DFE,根据相似三角形的对应边成比例的知识,可得出EF的长度.
  解答: 解:∵AB=AC,
  ∴∠ABC=∠ACB,
  又∵∠CBD=∠A,
  ∴△ABC∽△BDC,
  同理可得:△ABC∽△BDC∽△CDE∽△DFE,
  ∴ = , = , = ,
  解得:CD= ,DE= ,EF= .
  故选C.
  点评: 本题考查了相似三角形的判定与性质,本题中相似三角形比较容易找到,难点在于根据对应边成比例求解线段的长度,注意仔细对应,不要出错.
  3.(2013湖北宜昌,15,3分)如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是(  )
  A. (6,0) B. (6,3) C. (6,5) D. (4,2)
  考点: 相似三角形的性质;坐标与图形性质.
  分析: 根据相似三角形的判定:两边对应成比例且夹角相等的两三角形相似即可判断.
  解答: 解:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=2.
  A、当点E的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE∽△ABC,故本选项不符合题意;
  B、当点E的坐标为(6,3)时,∠CDE=90°,CD=2,DE=2,则AB:BC≠CD:DE,△CDE与△ABC不相似,故本选项符合题意;
  C、当点E的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB:BC=DE:CD,△EDC∽△ABC,故本选项不符合题意;
  D、当点E的坐标为(4,2)时,∠ECD=90°,CD=2,CE=1,则AB:BC=CD:CE,△DCE∽△ABC,故本选项不符合题意;
  故选B.
  点评: 本题考查了相似三角形的判定,难度中等.牢记判定定理是解题的关键.
  4. .[2013湖南邵阳,14,3分] 如图(四)所示,在△ABC中,点D、E分别是AB、AC的中点,连结DE,若DE=5,则BC=___________.
  知识考点:三角形中位线定理.
  审题要津:三角形的中位线平行于第三边并且等于第三边的一半.
  满分解答:解:∵点D、E分别是AB、AC的中点,∴DE是△ABC的中位线.又DE=5,则BC=2DE=10.故答案为10.
  名师点评:本题考查了三角形中位线的性质,解题时注意数形结合思想的运用.
  5.(2013•聊城,11,3分)如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABD的面积为a,则△ACD的面积为(  )
  A.a       B.        C.       D.
  考点:相似三角形的判定与性质.
  分析:首先证明△ACD∽△BCA,由相似三角形的性质可得:△ACD的面积:△ABC的面积为1:4,因为△ABD的面积为a,进而求出△ACD的面积.
  解答:解:∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA,∴△ACD的面积:△ABC的面积为1:4,
  ∴△ACD的面积:△ABD的面积=1:3,
  ∵△ABD的面积为a,∴△ACD的面积为a,故选C.
  点评:本题考查了相似三角形的判定和性质:相似三角形的面积比等于相似比的平方,是中考常见题型. 
  6.(2013•东营,10,3分)如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x,那么x的值(     )
  A.只有1个  B.可以有2个  C.可以有3个  D.有无数个
  答案:B
  解析:当直角边为6,8时,且另一个与它相似的直角三角形3,4也为直角边时,x的值为5,当8,4为对应边且为直角三角形的斜边时,x的值为 ,故x的值可以为5或 .两种情况。

 点此下载传统下载搜索更多相关资源
  • 说明:“点此下载”为无刷新无重复下载提示方式;“传统下载”为打开新页面进行下载,有重复下载提示。
  • 提示:非零点资源点击后将会扣点,不确认下载请勿点击。
  • 我要评价有奖报错加入收藏下载帮助

下载说明:

  • 没有确认下载前请不要点击“点此下载”、“传统下载”,点击后将会启动下载程序并扣除相应点数。
  • 如果资源不能正常使用或下载请点击有奖报错,报错证实将补点并奖励!
  • 为确保所下资源能正常使用,请使用[WinRAR v3.8]或以上版本解压本站资源。
  • 站内部分资源并非原创,若无意中侵犯到您的权利,敬请来信联系我们。

资源评论

共有 0位用户发表了评论 查看完整内容我要评价此资源