《集合与函数概念》全章教案
- 资源简介:
约6130字。
第一章 集合与函数概念
1.1集合 1.1.1 集合的含义及其表示
一. 教学目的:(1)初步理解集合的概念,知道常用数集及其记法;
(2)初步了解“属于”关系的意义;
(3)初步了解有限集、无限集、空集的意义;
教学重点:集合的含义与表示方法;
教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合。
教学过程:
一、问题引入:
我家有爸爸、妈妈和我; 我来泉州市第九中学;
五中高一(1)班; 我国的直辖市。
分析、归纳上述各个实例的共同特征,归纳出集合的含义。
二、建构数学:
1.集合的概念:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合(set)。集合常用大写的拉丁字母来表示,如集合A、集合B……
集合中的每一个对象称为该集合的元素(element),简称元。集合的元素常用小写的拉丁字母来表示。如a、b、c、p、q……
指出下列对象是否构成集合,如果是,指出该集合的元素。
(1)我国的直辖市; (2)五中高一(1)班全体学生;(3)较大的数
(4)young 中的字母; (5)大于 的数; (6)小于 的正数。
2.关于集合的元素的特征
(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写。
3.集合元素与集合的关系用“属于”和“不属于”表示;
(1)如果 是集合 的元素,就说 属于 ,记作 ∈
(2)如果 不是集合 的元素,就说 不属于 ,记作 (“∈”的开口方向,不能把a∈A颠倒过来写 )
4.有限集、无限集和空集的概念:
5.常用数集的记法:(1)非负整数集(自然数集):全体非负整数的集合 记作N,
(2)正整数集:非负整数集内排除0的集 记作N*或N+
(3)整数集:全体整数的集合 记作Z ,
(4)有理数集:全体有理数的集合 记作Q ,
(5)实数集:全体实数的集合 记作R
注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0
(2)非负整数集内排除0的集 记作N*或N+。
6.集合的表示方法:集合的表示方法,常用的有列举法和描述法
(1)列举法:把集合中的元素一一列举出来,写在大括号内。如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;各元素之间用逗号分开。
(2)描述法:把集合中的所有元素都具有的性质(满足的条件)表示出来,写成 的形式。
(3)韦恩(Venn)图示意
7.两个集合相等:如果两个集合所含的元素完全相同,则称这两个集合相等。
三、数学运用:
1.例题:
例1.用列举法和描述法表示方程 的解集。
例2.下列各式中错误的是 ( )
(1){奇数}= (2)
(3) (4)
例3.求不等式 的解集
例4.求方程 的所有实数解的集合。
例5.已知 ,且 ,求 的值
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源