浙江省11市2012年中考数学试题分类解析汇编专题11:圆
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
约6070字。
浙江11市2012年中考数学试题分类解析汇编
专题11:圆
一、选择题
1. (2012浙江杭州3分)若两圆的半径分别为2cm和6cm,圆心距为4cm,则这两圆的位置关系是【 】
A.内含 B.内切 C.外切 D.外离
【答案】B。
【考点】圆与圆的位置关系。
【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。因此,
∵两圆的半径分别为2cm和6cm,圆心距为4cm.则d=6﹣2=4。
∴两圆内切。故选B。
2.(2012浙江湖州3分)如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是【 】
A.45° B.85° C.90° D.95°
【答案】B。
【考点】圆周角定理,直角三角形两锐角的关系圆心角、弧、弦的关系。
【分析】∵AC是⊙O的直径,∴∠ABC=90°。
∵∠C=50°,∴∠BAC=40°。
∵∠ABC的平分线BD交⊙O于点D,∴∠ABD=∠DBC=45°。∴∠CAD=∠DBC=45°。
∴∠BAD=∠BAC+∠CAD=40°+45°=85°。故选B。
3. (2012浙江嘉兴、舟山4分)如图,AB是⊙O的弦,BC与⊙O相切于点B,连接OA、OB.若∠ABC=70°,则∠A等于【 】
A. 15° B. 20° C. 30° D. 70°
【答案】B。
【考点】切线的性质,等腰三角形的性质。
【分析】∵BC与⊙O相切于点B,∴OB⊥BC。∴∠OBC=90°。
∵∠ABC=70°,∴∠OBA=∠OBC﹣∠ABC=90°﹣70°=20°。
∵OA=OB,∴∠A=∠OBA=20°。故选B。
4. (2012浙江嘉兴、舟山4分)已知一个圆锥的底面半径为3cm,母线长为10cm,则这个圆锥的侧面积为( )
A. 15πcm2 B. 30πcm2 C. 60πcm2 D. 3 cm2
【答案】B。
【考点】圆锥的计算。
【分析】直接根据圆锥的侧面积计算即可:这个圆锥的侧面积= cm2。故选B。
5. (2012浙江宁波3分)如图,用邻边分别为a,b(a<b)的矩形硬纸板裁出以a为直径的两个半圆,再裁出与矩形的较长边、两个半圆均相切的两个小圆.把半圆作为圆锥形圣诞帽的侧面,小圆恰好能作为底面,从而做成两个圣诞帽(拼接处材料忽略不计),则a与b满足的关系式是【 】
A.b= a B.b= C.b= D.b=
【答案】D。
【考点】圆锥的计算。
【分析】∵半圆的直径为a,∴半圆的弧长为 。
∵把半圆作为圆锥形圣诞帽的侧面,小圆恰好能作为底面,
∴设小圆的半径为r,则: ,解得:
如图小圆的圆心为B,半圆的圆心为C,作BA⊥CA于A点,
则由勾股定理,得:AC2+AB2=BC2,
即: ,整理得:b= 。故选D。
6. (2012浙江衢州3分)如图,点A、B、C在⊙O上,∠ACB=30°,则sin∠AOB的值是【 】
A. B. C. D.
【答案】C。
【考点】圆周角定理,特殊角的三角函数值。
【分析】由点A、B、C在⊙O上,∠ACB=30°,根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠AOB=2∠ACB=60°,然后由特殊角的三角函数值得:
sin∠AOB=sin60°= 。故选C。
7. (2012浙江衢州3分)用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是【 】
A. cm B.3 cm C.4 cm D.4cm
【答案】C。
【考点】圆锥的计算,扇形的弧长,勾股定理。
【分析】利用扇形的弧长公式可得扇形的弧长;根据扇形的弧长=圆锥的底面周长,让扇形的弧长除以2π即为圆锥的底面半径,利用勾股定理可得圆锥形筒的高:
∵扇形的弧长= cm,圆锥的底面半径为4π÷2π=2cm,
∴这个圆锥形筒的高为 cm。故选C。
8. (2012浙江绍兴4分)如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别是:
甲:1、作OD的中垂线,交⊙O于B,C两点,
2、连接AB,AC,△ABC即为所求的三角形
乙:1、以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点。
2、连接AB,BC,CA.△ABC即为所求的三角形。
对于甲、乙两人的作法,可判断【 】
A. 甲、乙均正确 B. 甲、乙均错误 C.甲正确、乙错误 D.甲错误,乙正确
【答案】A。
【考点】垂径定理,等边三角形的判定和性质,等腰三角形的性质,三角形外角性质,含30度角的直角三角形。
【分析】根据甲的思路,作出图形如下:
连接OB,∵BC垂直平分OD,∴E为OD的中点,且OD⊥BC。∴OE=DE= OD。
又∵OB=OD,∴在Rt△OBE中,OE= OB。∴∠OBE=30°。
又∵∠OEB=90°,∴∠BOE=60°。
∵OA=OB,∴∠OAB=∠OBA。
又∵∠BOE为△AOB的外角,∴∠OAB=∠OBA=30°,∴∠ABC=∠ABO+∠OBE=60°。
同
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源