《函数模型及其应用》教案1
- 资源简介:
约8030字。
函数模型及其应用
突破思路
本节内容主要是运用所学的函数知识去解决实际问题,要求学生掌握函数应用的基本方法和步骤.函数的应用问题是高考中的热点内容,必须下功夫练好基本功.本节涉及的函数模型有:一次函数、二次函数、分段函数及较简单的指数函数和对数函数.其中,最重要的是二次函数模型.
合作讨论
1.解决函数应用题的基本步骤和流程图是什么?
我的思路:解决函数应用题的流程图是:
解决函数应用题的基本步骤是:
第一步:认真读题,缜密审题,确切理解题意,明确问题实际背景,然后进行科学的抽象、概括,将实际问题转化成实际问题,即实际问题数学化.
第二步:运用所学的数学知识和数学方法解答函数问题,得出函数问题的解.
第三步:将所得函数问题的解代入实际问题进行验证,看是否符合实际,并对实际问题作答.
2.解决函数应用题的关键点和难点是什么?
我的思路:解决函数应用题的关键有两点:一是实际问题数学化,即在理解的基础上,通过列表、画图,引入变量,建立直角坐标系等手段把实际问题翻译成数学问题,把文字语言翻译成数学符号语言.二是对得到的函数模型进行解答,得出数学问题的解,要注重数学能力的培养.
思维过程
解决函数应用题关键在于理解题意,提高学生的阅读能力.一方面要加强对常见函数模型的理解,弄清其产生的实际背景,把数学问题生活化.另一方面,要不断拓宽学生的知识面,提高其间接的生活阅历,如经常介绍一些诸如物价、行程、产值、利润、环保等实际问题,也可以涉及角度、面积、体积、造价等最优化问题,逐步渗透、细水长流,培养学生实际问题数学化的意识和能力.
新题解答
【例1】某地方政府为保护地方电子工业发展,决定对某一进口电子产品征收附加税.已知这种电子产品国内市场零售价为每件250元,每年可销售40万件,若政府增加附加税率为每百元收t元时,则每年销售量将减少 t万件.
(1)将税金收入表示为征收附加税率的函数;
(2)若在该项经营中每年征收附加税金不低于600万元,那么附加税率应控制在什么范围?
解析:(1)设每年销售是x万件,则每年销售收入为250x万元,征收附加税金为y=250x•t%.
依题意,x=40- t.
所求的函数关系式为y=250(40- t)t%.
(2)依题意,250(40- t)•t%≥600,即t2-25t+150≤0,
∴10≤t≤15.
即税率应控制在10%~15%之间为宜.
【例2】一家报刊推销员从报社买进报纸的价格是每份0.20元,卖出的价格是每份0.30元,卖不完的还可以以每份0.08元的价格退回报社.在一个月(以30天计算)有20天每天可卖出400份,其余10天只能卖250份,但每天从报社买进报纸的份数都相同,问应该从报社买多少份才能使每月所获得的利润最大?并计算每月最多能赚多少钱?
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源