2012届高考数学一轮复习全套考点解析指导教案(71份)
- 资源简介:
2012届高考数学一轮复习教案【含解析】全套(打包71套)
├─2012届高考数学一轮复习教案:第六章 不等式(打包6份)
│2012届高考数学一轮复习教案:6.1 不等式的性质.doc
│2012届高考数学一轮复习教案:6.2 不等式的证明(一).doc
│2012届高考数学一轮复习教案:6.3 不等式的证明(二).doc
│2012届高考数学一轮复习教案:6.5 不等式的解法(二).doc
│2012届高考数学一轮复习教案:6.6 不等式的应用.doc
│2012届高考数学一轮复习教案:6.7 不等式的综合问题.doc
├─2012届高考数学一轮复习教案:第八章 初步算法与框图(打包7份)
│2012届高考数学一轮复习教案:8.1 椭圆.doc
│2012届高考数学一轮复习教案:8.2 双曲线.doc
│2012届高考数学一轮复习教案:8.3 抛物线.doc
│2012届高考数学一轮复习教案:8.4 直线与圆锥曲线的位置关系.doc
│2012届高考数学一轮复习教案:8.5 轨迹问题.doc
│2012届高考数学一轮复习教案:8.6 圆锥曲线的应用.doc
│2012届高考数学一轮复习教案:8.7 圆锥曲线的综合问题.doc
├─2012届高考数学一轮复习教案:第八章 圆锥曲线与方程(打包7份)
│2012届高考数学一轮复习教案:8.1 椭圆.doc
│2012届高考数学一轮复习教案:8.2 双曲线.doc
│2012届高考数学一轮复习教案:8.3 抛物线.doc
│2012届高考数学一轮复习教案:8.4 直线与圆锥曲线的位置关系.doc
│2012届高考数学一轮复习教案:8.5 轨迹问题.doc
│2012届高考数学一轮复习教案:8.6 圆锥曲线的应用.doc
│2012届高考数学一轮复习教案:8.7 圆锥曲线的综合问题.doc
├─2012届高考数学一轮复习教案:第二章 函数的概念与基本初等函数I(打包10份)
│2012届高考数学一轮复习教案:2.8 对数与对数函数.doc
│2012届高考数学一轮复习教案:2.1 函数的概念.doc
│2012届高考数学一轮复习教案:2.10 函数的最值.doc
│2012届高考数学一轮复习教案:2.11 函数的应用.doc
│2012届高考数学一轮复习教案:2.12 函数的综合问题.doc
│2012届高考数学一轮复习教案:2.2 函数的表示.doc
│2012届高考数学一轮复习教案:2.3 函数的单调性.doc
│2012届高考数学一轮复习教案:2.5 反函数.doc
│2012届高考数学一轮复习教案:2.6 二次函数.doc
│2012届高考数学一轮复习教案:2.7 指数与指数函数.doc
├─2012届高考数学一轮复习教案:第九章 直线与圆(打包7份)
│2012届高考数学一轮复习教案:9.1 平面、空间两条直线.doc
│2012届高考数学一轮复习教案:9.2 直线与平面平行.doc
│2012届高考数学一轮复习教案:9.3 直线与平面垂直.doc
│2012届高考数学一轮复习教案:9.4 两个平面平行.doc
│2012届高考数学一轮复习教案:9.5 两个平面垂直.doc
│2012届高考数学一轮复习教案:9.6 空间向量及其运算(B).doc
│2012届高考数学一轮复习教案:9.7 空间向量及其坐标运算(B).doc
├─2012届高考数学一轮复习教案:第九章 空间几何体(打包7份)
│2012届高考数学一轮复习教案:9.1 平面、空间两条直线.doc
│2012届高考数学一轮复习教案:9.2 直线与平面平行.doc
│2012届高考数学一轮复习教案:9.3 直线与平面垂直.doc
│2012届高考数学一轮复习教案:9.4 两个平面平行.doc
│2012届高考数学一轮复习教案:9.5 两个平面垂直.doc
│2012届高考数学一轮复习教案:9.6 空间向量及其运算(B).doc
│2012届高考数学一轮复习教案:9.7 空间向量及其坐标运算(B).doc
├─2012届高考数学一轮复习教案:第七章 空间几何体(打包6份)
│2012届高考数学一轮复习教案:7.1 直线的方程.doc
│2012届高考数学一轮复习教案:7.2 两直线的位置关系.doc
│2012届高考数学一轮复习教案:7.3 对称问题.doc
│2012届高考数学一轮复习教案:7.4 简单的线性规划.doc
│2012届高考数学一轮复习教案:7.5 圆的方程.doc
│2012届高考数学一轮复习教案:7.6 直线与圆的位置关系.doc
├─2012届高考数学一轮复习教案:第七章 直线与圆(打包6份)
│2012届高考数学一轮复习教案:7.1 直线的方程.doc
│2012届高考数学一轮复习教案:7.2 两直线的位置关系.doc
│2012届高考数学一轮复习教案:7.3 对称问题.doc
│2012届高考数学一轮复习教案:7.4 简单的线性规划.doc
│2012届高考数学一轮复习教案:7.5 圆的方程.doc
│2012届高考数学一轮复习教案:7.6 直线与圆的位置关系.doc
├─2012届高考数学一轮复习教案:第三章 数列(打包5份)
│2012届高考数学一轮复习教案:3.5 数列的应用.doc
│2012届高考数学一轮复习教案:3.1 数列的概念.doc
│2012届高考数学一轮复习教案:3.2 等差数列.doc
│2012届高考数学一轮复习教案:3.3 等比数列.doc
│2012届高考数学一轮复习教案:3.4 等差数列与等比数列的综合问题.doc
├─2012届高考数学一轮复习教案:第十二章 统计(打包3份)
│2012届高考数学一轮复习教案:12.1 抽样方法与总体分布的估计.doc
│2012届高考数学一轮复习教案:12.2 总体期望值和方差的估计.doc
│2012届高考数学一轮复习教案:12.3 统 计.doc
├─2012届高考数学一轮复习教案:第十三章 导数及其应用(打包3份)
│2012届高考数学一轮复习教案:13.1 导数的概念与运算.doc
│2012届高考数学一轮复习教案:13.2 导数的应用.doc
│2012届高考数学一轮复习教案:13.3 导数的综合问题.doc
├─2012届高考数学一轮复习教案:第十一章 概率(打包3份)
│2012届高考数学一轮复习教案:11.1 随机事件的概率.doc
│2012届高考数学一轮复习教案:11.2 互斥事件有一个发生的概率.doc
│2012届高考数学一轮复习教案:11.3 相互独立事件同时发生的概率.doc
├─2012届高考数学一轮复习教案:第十章 计数原理(打包5份)
│2012届高考数学一轮复习教案:10.1 分类计数原理、分步计数原理.doc
│2012届高考数学一轮复习教案:10.2 排列.doc
│2012届高考数学一轮复习教案:10.3 组合.doc
│2012届高考数学一轮复习教案:10.4 排列与组合的综合问题.doc
│2012届高考数学一轮复习教案:10.5 二项式定理.doc
├─2012届高考数学一轮复习教案:第四章 三角函数(打包9份)
│2012届高考数学一轮复习教案:4.2 两角和与差、二倍角的公式(一).doc
│2012届高考数学一轮复习教案:4.1 三角函数的概念.doc
│2012届高考数学一轮复习教案:4.10 三角函数的应用.doc
│2012届高考数学一轮复习教案:4.3 两角和与差、二倍角的公式(二).doc
│2012届高考数学一轮复习教案:4.4 两角和与差、二倍角的公式(三).doc
│2012届高考数学一轮复习教案:4.5 三角函数的图象与性质(一).doc
│2012届高考数学一轮复习教案:4.6 三角函数的图象与性质(二).doc
│2012届高考数学一轮复习教案:4.7 三角函数的图象与性质(三).doc
│2012届高考数学一轮复习教案:4.9 三角函数的最值.doc
├─2012届高考数学一轮复习教案:第五章 平面向量(打包5份)
│2012届高考数学一轮复习教案:5.1 向量的概念、向量的加法与减法.doc
│2012届高考数学一轮复习教案:5.2 向量的数量积.doc
│2012届高考数学一轮复习教案:5.3 两点间距离公式、线段的定比分点与图形的平移.doc
│2012届高考数学一轮复习教案:5.4 解斜三角形.doc
│2012届高考数学一轮复习教案:5.5 向量的应用.doc
└─2012届高考数学一轮复习教案:第一章 集合与逻辑(打包3份)
2012届高考数学一轮复习教案:1.3 充要条件与反证法.doc
2012届高考数学一轮复习教案:1.1 集合的概念与运算.doc
2012届高考数学一轮复习教案:1.2 逻辑联结词与四种命题.doc第一章 集合与简易逻辑
●网络体系总览
●考点目标定位
1.理解集合、子集、补集、交集、并集的概念;了解属于、包含、相等关系的意义.
2.掌握有关的术语和符号,并会用它们正确表示一些简单的集合.
3.理解逻辑联结词“或”“且”“非”的含义;理解四种命题及其相互关系;掌握充要条件的意义.
4.学会运用数形结合、分类讨论的思想方法分析和解决有关集合的问题,形成良好的思维品质.
●复习方略指南
本章内容在高考中以考查空集与全集的概念,元素与集合、集合与集合之间的关系,集合的交、并、补运算为重点,以上内容又以集合的运算为重点考查内容.逻辑联结词与充要条件这部分,以充要条件为重点考查内容.
本章内容概念性强,考题大都为容易的选择题,因此复习中应注意:
1.复习集合,可以从两个方面入手,一方面是集合的概念之间的区别与联系,另一方面是对集合知识的应用.
2.主要是把握集合与元素、集合与集合之间的关系,弄清有关的术语和符号,特别是对集合中的元素的属性要分清楚.
3.要注意逻辑联结词“或”“且”“非”与集合中的“并”“交”“补”是相关的,二者相互对照可加深对双方的认识和理解.
4.复习逻辑知识时,要抓住所学的几个知识点,通过解决一些简单的问题达到理解、掌握逻辑知识的目的.
5.集合多与函数、方程、不等式有关,要注意知识的融会贯通.
1.2 逻辑联结词与四种命题
●知识梳理
1.逻辑联结词
(1)命题:可以判断真假的语句叫做命题.
(2)逻辑联结词:“或”“且”“非”这些词叫做逻辑联结词.
(3)简单命题与复合命题:不含逻辑联结词的命题叫简单命题;由简单命题和逻辑联结词构成的命题叫做复合命题.
(4)真值表:表示命题真假的表叫真值表.
2.四种命题
(1)四种命题
原命题:如果p,那么q(或若p则q);逆命题:若q则p;
否命题:若 p则 q;逆否命题:若 q则 p.
(2)四种命题之间的相互关系
这里,原命题与逆否命题,逆命题与否命题是等价命题.
●点击双基
1.由“p:8+7=16,q:π>3”构成的复合命题,下列判断正确的是
A.p或q为真,p且q为假,非p为真
B.p或q为假,p且q为假,非p为真
C.p或q为真,p且q为假,非p为假
D.p或q为假,p且q为真,非p为真
解析:因为p假,q真,由复合命题的真值表可以判断,p或q为真,p且q为假,非p为真.
答案:A
2.(2004年福建,3)命题p:若a、b∈R,则|a|+|b|>1是|a+b|>1的充分而不必要条件;
命题q:函数y= 的定义域是(-∞,-1]∪[3,+∞),则
A.“p或q”为假 B.“p且q”为真
C. p真q假 D. p假q真
解析:∵|a+b|≤|a|+|b|,
若|a|+|b|>1,不能推出|a+b|>1,而|a+b|>1,一定有|a|+|b|>1,故命题p为假.
又由函数y= 的定义域为|x-1|-2≥0,即|x-1|≥2,即x-1≥2或x-1≤-2.
故有x∈(-∞,-1]∪[3,+∞).∴q为真命题.
答案:D
3.(2005年春季上海,15)设函数f(x)的定义域为R,有下列三个命题:
①若存在常数M,使得对任意x∈R,有f(x)≤M,则M是函数f(x)的最大值;
②若存在x0∈R,使得对任意x∈R,且
1.1 集合的概念与运算
●知识梳理
1.集合的有关概念
2.元素与集合、集合与集合之间的关系
(1)元素与集合:“∈”或“ ”.
(2)集合与集合之间的关系:包含关系、相等关系.
3.集合的运算
(1)交集:由所有属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集,记为A∩B,即A∩B={x|x∈A且x∈B}.
(2)并集:由所有属于集合A或属于集合B的元素所组成的集合,叫做集合A与集合B的并集,记为A∪B,即A∪B={x|x∈A或x∈B}.
(3)补集:一般地,设S是一个集合
1.3 充要条件与反证法
●知识梳理
1.充分条件:如果p q,则p叫q的充分条件,原命题(或逆否命题)成立,命题中的条件是充分的,也可称q是p的必要条件.
2.必要条件:如果q p,则p叫q的必要条件,逆命题(或否命题)成立,命题中的条件为必要的,也可称q是p的充分条件.
3.充要条件:如果既有p q,又有q p,记作p q,则p叫做q的充分必要条件,简称充要条件,原命题和逆命题(或逆否命题和否命题)都成立,命题中的条件是充要的.
4.反证法:当直接证明有困难时,常用反证法.
●点击双基
1.ac2>bc2是a>b成立的
A.充分而不必要条件 B.充要条件
C.必要而不充分条件 D.既不充分也不必要条件
解析:a>b ac2>bc2,如c=0.
答案:A
2.(2004年湖北,理4)已知a、b、c为非零的平面向量.甲:a•b=a•c,乙:b=c,则
A.甲是乙的充分条件但不是必要条件
B.甲是乙的必要条件但不是充分条件
C.甲是乙的充要条件
D.甲既不是乙的充分条件也不是乙的必要条件
解析:命题甲:a•b=a•c a•(b-c)=0 a=0或b=c.
命题乙:b=c,因而乙 甲,但甲 乙.
故甲是乙的必要条件但不是充分条件.
答案:B
3.(2004年浙江,8)在△ABC中,“A>30°”是“sinA> ”的
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
解析:在△ABC中,A>30° 0<sinA<1 sinA> ,sinA> 30°<A<150°
A>30°.∴“A>30°”是“sinA> ”的必要不充分条件.
答案:B
4.若条件p:a>4,q:5<a<6,则p是q的______________.
解析:a>4 5<a<6,如a=7虽然满足a>4,但显然a不满足5<a<6.
答案:必要不充分条件
5.(2005年春季上海,16)若a、b、c是常数,则“a>0且b2-4ac<0”是“对任意x∈R,有ax2+bx+c>0”的
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析:若a>0且b2-4ac<0,则对任意x∈R,有ax2+bx+c>0,反之,则不一定成立.如a=0,b=0且c>0时,也有对任意x∈R,有ax2+bx+c>0.因此
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源