《函数单调性》教学设计
- 资源简介:
约5690字。
函数单调性的教学设计
一.内容和内容解析
函数的单调性是研究当自变量x不断增大时,它的函数y增大还是减小的性质.如函数单调增表现为“随着x增大,y也增大”这一不变的特征.与函数的奇偶性不同,函数的奇偶性是研究x成为相反数时,y是否也成为相反数,即函数的对称性质.
函数的单调性与函数的极值类似,是函数的局部性质,在整个定义域上不一定具有.这与函数的奇偶性、函数的最大值、最小值不同,它们是函数的整体性质,即函数在整个定义域上的性质.
函数单调性的研究方法也具有典型意义,体现了对函数研究的一般方法.这就是,加强数与形的结合,由直观到抽象;由特殊到一般.首先借助对函数图象的观察、分析、归纳,发现函数的增、减变化的直观特征,进一步量化,发现增、减变化数字特征,从而进一步加以解析研究,数学刻画.
函数单调性的概念是研究具体函数单调性的依据,在研究函数的值域、定义域、最大值、最小值等性质中有重要应用(内部);在解不等式、证明不等式、数列的性质等数学的其他内容的研究中也有重要的应用(外部).
二.目标和目标解析
本节课要求学生理解函数在某区间上单调的意义,掌握用函数的单调性定义证明函数在区间上具有某种单调性的方法(步骤)。
1.要求能够以具体的例子说明函数在某区间上具有某种单调性;
2.能够举例说明函数在定义域的子集(区间)上具有单调性,而在整个定义域上未必具有单调性,说明函数的单调性是函数的局部性质;
3.对于一个具体的函数,能够按照单调性的定义,证明它的单调性:在区间上任意取x1,x2,x1<x2,作差f(x2)- f(x1),然后判断这个差的符号,从而证明函数在该区间上具有单调性。
三.教学问题诊断分析
学生已有的知识结构是,初中已经学习过函数的概念,初步认识到函数是一个刻画某些运动变化数量关系的数学概念;进入高中以后,又进一步学习了函数的概念,认识到函数是两个数集之间的一种对应。学生还了解函数的三种表示方法,特别是可以借助图像直观对函数性质加以考察。此外,还学习过一次函数、二次函数、反比例函数等几个简单而具体的函数,了解它们的图像及性质。尤其值得注意的是,学生有利用函数图像进行两个数大小比较的经验。这些都是在函数单调性教学时值得关注的,是建立函数的单调性的生长点。
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源