《等比数列的通项与求和》复习教案
- 资源简介:
约1450字。
§4.2等比数列的通项与求和
一、知识导学
1. 等比数列:一般地,如果一个数列从第2项起,每一项与它的前一项的比都等于 同 一 个 常 数,那 么 这 个 数 列 就 叫 做 等 比 数 列,这个常数叫做等比数列的公比,公比通常用字母q表示.
2. 等比中项:若a,G,b成等比数列,则称G 为a 和b 的等比中项.
3.等比数列的前n项和公式:
二、疑难知识导析
1.由于等比数列的每一项都可能作分母,故每一项均不为0,因此q也不为0.
2.对于公比q,要注意它是每一项与它前一项的比,防止把相邻两项的比的次序颠倒.
3.“从第2项起”是因为首项没有“前一项”,同时应注意如果一个数列不是从第2项起,而是从第3项或第4项起每一项与它前一项的比都是同一个常数,此数列不是等比数列,这时可以说此数列从. 第2项或第3项起是一个等比数列.
4.在已知等比数列的a1和q的前提下,利用通项公式an=a1qn-1,可求出等比数列中的任一项.
5.在已知等比数列中任意两项的前提下,使用an=amqn-m可求等比数列中任意一项.
6.等比数列{an}的通项公式an=a1qn-1可改写为 .当q>0,且q 1时,y=qx是一个指数函数,而 是一个不为0 的常数与指数函数的积,因此等比数列{an}的图象是函数 的图象上的一群孤立的点.
7.在解决等比数列问题时,如已知,a1,an,d, ,n中任意三个,可求其余两个。
三、经典例题导讲
[例1] 已知数列 的前n项之和Sn=aqn( 为非零常数),则 为( )。
A.等差数列
B.等比数列
C.既不是等差数列,也不是等比数列
D.既是等差数列,又是等比数列
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源