《绝对值》教案7
- 资源简介:
约1200字。
第6课时:绝对值
教学内容:
教科书第29—31页,2.4绝对值。
教学目的和要求:
1.使学生初步理解绝对值的概念。
2.明确绝对值的代数定义和几何意义;会求一个已知数的绝对值;会在已知一个数的绝对值条件下求这个数。
3.培养学生用数形结合思想解决问题的能力,渗透分类讨论的数学思想。
教学重点和难点:
重点:让学生掌握求一个已知数的绝对值及正确理解绝对值的概念。
难点:对绝对值的几何意义、代数定义的导出、对“负数的绝对值是它的相反数”的理解。
教学工具和方法:
工具:应用投影仪,投影片。 方法:分层次教学,讲授、练习相结合。
教学过程:
一、复习引入:
1.在数轴上分别标出–5,3.5,0及它们的相反数所对应的点。
2.在数轴上找出与原点距离等于6的点。
3.相反数是怎样定义的?
引导学生从代数与几何两方面的特点出发回答相反数的定义。从几何方面可以说在数轴上原点两旁,离开原点距离相等的两个点所表示的两个数互为相反数;从代数方面说只有符号不同的两个数互为相反数。那么互为相反数的两个数有什么特征相同呢?由此引入新课,归纳出绝对值的定义。
二、讲授新课:
1.发现、总结绝对值的定义:
我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值( absolute value )。记作|a|。
例如,在数轴上表示数―6与表示数6的点与原点的距离都是6,所以―6和6的绝对值都是6,记作|―6|=|6|=6。同样可知|―4|=4,|+1.7|=1.7。
2.试一试:你能从中发现什么规律? 由绝对值的意义,我们可以知道:
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源