《函数的最值》学案
- 资源简介:
- 约1440字。
第八课时 函数的最值
【学习导航】
知识网络
学习要求
1.了解函数的最大值与最小值概念;
2.理解函数的最大值和最小值的几何意义;
3.能求一些常见函数的最值和值域.
自学评价
1.函数最值的定义:
一般地,设函数的定义域为.
若存在定值,使得对于任意,有恒成立,则称为的最大值,记为;
若存在定值,使得对于任意,有恒成立,则称为的最小值,记为;
2.单调性与最值:
设函数的定义域为,
若是增函数,则 , ;
若是减函数,则 , .
【精典范例】
一.根据函数图像写单调区间和最值:
例1:如图为函数,的图象,指出它的最大值、最小值及单调区间.
【解】
由图可以知道:
当时,该函数取得最小值;
当时,函数取得最大值为;
函数的单调递增区间有2个:和;
该函数的单调递减区间有三个:、和
二.求函数最值:
例2:求下列函数的最小值:
(1);
(2),.
【解】
(1)
∴当时,;
(2)因为函数在上是单调减函数,所以当时函数取得最小值为.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源