《函数的最值》说课稿
- 资源简介:
约2230字。
《函数的最值》说课稿
说教材
地位与重要性
函数的最值是《高中数学》一年级第一学期的内容,是函数基本性质的重要部分。在实际问题的解决过程中,建立了变量间的函数关系后,求最值培养了学生运用基础理论研究具体问题的能力,这也是学习数学的目的之一。函数最值的教学在培养学生数形结合、化归的数学思想同时也可以使学生养成严谨思维的学习习惯。函数的思想是一种重要的数学思想,它体现了运动变化和对立统一的观点,本节课对初高中知识的衔接起到了承上启下的作用。函数的最值问题与不等式、方程、参数范围的探求及解析几何等知识综合在一起往往能编拟综合性较强的新型题目,可以综合考查学生应用函数知识分析解决问题的能力,从而成为高考的高档解答题,是高考测试的热点之一。
(二)教学目标
知识与能力目标:掌握求二次函数最值的常用方法——配方法,培养学生数形结合、化归的数学思想和运用基础理论研究解决具体问题的能力。
情感目标:经历和体验数学活动的过程以及数学在现实生活中的作用,激发学生学习数学知识的积极性,树立学好数学的信心。
过程目标:通过课堂学习活动培养学生相互间的合作交流,且在相互交流的过程中养成学生表述、抽象、总结的思维习惯,进而获得成功的体验。
科研目标:在教师指导下学生经历和体验探究过程的方法。
(三)教学重难点
重点:配方法、数形结合求二次函数的最值。
难点:二次函数在闭区间上的最值。
说教法与学法
在初中学生已经学习过二次函数的知识,根据本节课的内容和学生的实际水平,本节课主要采用探究式教学法和讲练结合法进行教学。教学过程也是一个学生主动建构的过程,教师不能无视学生已有的经验,企图从外部将新知识强行装入学生的头脑,而是要把学生现有的知识经验作为新知识的生长点,引导学生从原有的知识经验中“生长”及发现新的知识经验。在本堂课学习中,学生发挥主体作用,主动地思考探究求解最值的最优策略,并归纳出自己的解题方法,将知识主动纳入已建构好的知识体系,真正做到“学会学习”。
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源