《平面向量的数量积的物理背景及其含义》教案
- 资源简介:
约1610字。
2.4.1平面向量的数量积的物理背景及其含义
教学目的:
1.掌握平面向量的数量积及其几何意义;
2.掌握平面向量数量积的重要性质及运算律;
3.了解用平面向量的数量积可以处理垂直的问题;
4.掌握向量垂直的条件.
教学重点:平面向量的数量积定义
教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用
教学过程:
一、复习引入:
(1)两个非零向量夹角的概念:
已知非零向量a与b,作 =a, =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.
说明:(1)当θ=0时,a与b同向;
(2)当θ=π时,a与b反向;
(3)当θ= 时,a与b垂直,记a⊥b;
(4)注意在两向量的夹角定义,两向量必须是同起点的.范围0≤≤180
(2)两向量共线的判定
(3)练习
1.若a=(2,3),b=(4,-1+y),且a∥b,则y=( C )
A.6 B.5 C.7 D.8
2.若A(x,-1),B(1,3),C(2,5)三点共线,则x的值为( B )
A.-3 B.-1 C.1 D.3
(4)力做的功:W = |F||s|cos,是F与s的夹角.
二、讲解新课:
1.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,
则数量|a||b|cos叫a与b的数量积,记作ab,即有ab = |a||b|cos,(0≤θ≤π).
并规定0向量与任何向量的数量积为0.
探究:1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?
2、两个向量的数量积与实数乘向量的积有什么区别?
(1)两个向量的数量积是一个实数,不是向量,符号由cos的符号所决定.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源