《球的表面积与体积》教案
- 资源简介:
约2460字。
第三课时 球的表面积与体积
(一)教学目标
1.知识与技能
(1)了解球的表面积与体积公式(不要求记忆公式).
(2)培养学生空间想象能力和思维能力.
2.过程与方法
通过作轴截面,寻找旋转体类组合体中量与量之间的关系.
3.情感、态度与价值
让学生更好地认识空间几何体的结构特征,培养学生学习的兴趣.
(二)教学重点、难点
重点:球的表面积与体积的计算
难点:简单组合体的体积计算
(三)教学方法
讲练结合
教学过程 教学内容 师生互动 设计意图
新课引入 复习柱体、锥体、台体的表面积和体积,点出主题. 师生共同复习,教师点出点题(板书) 复习巩固
探索新知 1.球的体积:
2.球的表面积:
师:设球的半径为R,那么它的体积: ,它的面积 现在请大家观察这两个公式,思考它们都有什么特点?
生:这两个公式说明球的体积和表面积都由球的半径R惟一确定.其中球的体积是半径R的三次函数,球的表面积是半径R的二次函数.
师 (肯定) :球的体积公式和球的表面积公式以后可以证明.这节课主要学习它们的应用. 加强对公式的认识培养学生理解能力
典例分析 例1 如图,圆柱的底面直径与高都等于球的直径.求证:
(1)球的体积等于圆柱体积的 ;
(2)球的表面积等于圆柱的侧面积.
证明:(1)设球的半径为R,则圆柱的底面半径为R,高为2R.
因为 ,
,
所以, .
(2)因为 ,
,
所以,S球 = S圆柱侧.
例2 球与圆台的上、下底面及侧面都相切,且球面面积与圆台的侧面积之比为3:4,则球的体积与圆台的体积之比为( )
A.6:13 B.5:14
C.3:4 D.7:15
【解析】如图所示,作圆台的轴截面等腰梯形ABCD,球的大圆O内切于梯形ABCD.
设球的半径为R,圆台的上、下底面半径分别为r1、r2,由平面几何知识知,圆台的高为2R,母线长为r1 + r2.
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源