《导数概念、运算及应用》复习教案
- 资源简介:
约4540字。
第七讲——导数概念、运算及应用
知识清单
1.导数的概念
函数y=f(x),如果自变量x在x 处有增量 ,那么函数y相应地有增量 =f(x + )-f(x ),比值 叫做函数y=f(x)在x 到x + 之间的平均变化率,即 = 。如果当 时, 有极限,我们就说函数y=f(x)在点x 处可导,并把这个极限叫做f(x)在点x 处的导数,记作f’(x )或y’| 。
即f(x )= = 。
说明:(1)函数f(x)在点x 处可导,是指 时, 有极限。如果 不存在极限,就说函数在点x 处不可导,或说无导数。
(2) 是自变量x在x 处的改变量, 时,而 是函数值的改变量,可以是零。
由导数的定义可知,求函数y=f(x)在点x 处的导数的步骤(可由学生来归纳):
(1)求函数的增量 =f(x + )-f(x );
(2)求平均变化率 = ;
(3)取极限,得导数f’(x )= 。
2.导数的几何意义
函数y=f(x)在点x 处的导数的几何意义是曲线y=f(x)在点p(x ,f(x ))处的切线的斜率。也就是说,曲线y=f(x)在点p(x ,f(x ))处的切线的斜率是f’(x )。相应地,切线方程为y-y =f/(x )(x-x )。
3.几种常见函数的导数:
① ② ③ ; ④ ;
⑤ ⑥ ; ⑦ ; ⑧ .
4.两个函数的和、差、积的求导法则
法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),
即: (
法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个
函数乘以第二个函数的导数,即:
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源