《方差和标准差》教案
- 资源简介:
约1960字。
《方差和标准差》教案
〖教学目标〗
◆1、了解方差、标准差的概念.
◆2、会求一组数据的方差、标准差,并会用他们表示数据的离散程度.
◆3、能用样本的方差来估计总体的方差.
◆4、通过实际情景,提出问题,并寻求解决问题的方法,培养学生应用数学的意识和能力.
〖教学重点与难点〗
◆教学重点:本节教学的重点是方差的概念和计算。.
◆教学难点:方差如何表示数据的离散程度,学生不容易理解,是本节教学的难点.
〖教学过程〗
一、创设情景,提出问题
甲、乙两名射击手的测试成绩统计如下表:
第一次 第二次 第三次 第四次 第五次
甲命中环数 7 8 8 8 9
乙命中环数 10 6 10 6 8
①请分别 算出甲、乙两名射击手的平均成绩;
②请根据这两名射击手的成绩在图中画出折线图;
二、合作交流,感知问题
请根据统计图,思考问题:
①、甲、乙两名射击手他们每次射击成绩与他们的平均成绩比较, 哪一个偏离程度较低?
②、射击成绩偏离平均数的程度与数据的离散程度与折线的波动情况有怎样的联系?
③、用怎样的特征数来表示数据的偏离程度?可否用各个数据与平均的差的累计数来表示数据的偏离程度?
④、是否可用各个数据与平均数的差的平方和来表示数据的偏离程度?
⑤、数据的偏离程度还与什么有关?要比较两组样本容量不相同的数据的偏离平均数的程度,应如何比较?
三、概括总结,得出概念
1、 根据以上问题情景,在学生讨论,教师补充的基础上得出方差的概念、计算方法、及用方差来判断数据的稳定性。
2、 方差的单位和数据的单位不统一,引出标准差的概念。
(注意:在比较两组数据特征时,应取相同的样本容量,计算过程可借助计数器)
3、 现要挑选一名射击手参加比赛,你认为挑选哪一位比较适宜?为什么?
(这个问题没有标准答案,要根据比赛的具体情况来分析,作出结论)
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源