《函数的概念》教案3(第1课时)
- 资源简介:
约3470字。
《函数的概念》教案(第一课时)
【三维目标】
1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;通过学习函数概念,培养学生观察问题,提出问题的探究能力,进一步培养学生学习数学的兴趣和抽象概括能力;启发学生用函数模型表述和解决现实世界中蕴含的规律,逐渐形成善于提出问题的习惯,学会数学表达和交流,发展数学应用意识.
2.掌握构成函数的三要素,体会对应关系在刻画函数概念中的作用,使学生感受到学习函数的必要性的重要性,激发学生学习的积极性.
【教学重点】正确理解函数的概念,体会函数是描述变量之间的依赖关系的重要数学模型.
【教学难点】函数概念及符号y=f(x)的理解.
【教学方法】诱思教学法
【教学过程】
Ⅰ.创设情景 引入课题
北京时间2007年10月24日18时05分,万众瞩目的“嫦娥一号”探月卫星成功发射,在“嫦娥一号”飞行期间,我们时刻关注着“嫦娥一号”离我们的距离随时间是如何变化的,数学上用函数来描述这种运动变化中的数量关系.
在初中已学习过函数的定义.
首先请同学们复习回顾初中学习的函数的定义:
设在某一变化过程中有两个变量x和y,如果对于每一个x值,y都有唯一的值和它对应,那么就说y是x的函数,x叫自变量,y叫因变量.
函数的定义从运动变化的观点描述了变量之间的依赖关系.
Ⅱ.探索研究
上一章我们已学习过集合,并且知道集合是现代数学的基本语言,能否用集合和对应的语言来描述函数?函数又有哪些构成要素呢?将是本节课探讨的主要内容.
一、实例分析
(1)一枚炮弹发射后,经过26s落到地面击中目标. 炮弹的射高为845m,且炮弹距地面的高度h(单位:m)随时间t(单位:s)变化的规律是:
h=130t-5t2. (﹡)
你能得出炮弹飞行5秒、10秒、20秒时距地面多高吗?其中,时间t的变化范围是什么?炮弹距离地面高度h的变化范围是什么?
炮弹距离地面的高度h随时间t的变化而变化,对于在(0,26)范围内变化的任意一个时间t,按照关系式,都有没有高度h与它对应呢?若有,有几个?
这里,炮弹飞行时间t的变化范围是数集 ,炮弹距地面的高度h的变化范围是数集 .
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源