直线平面简单几何体(B)教案(平面的基本性质等36课时)

  • 手机网页: 浏览手机版
  • 资源类别: 北师大版 / 高中教案 / 必修二教案
  • 文件类型: doc
  • 资源大小: 5.8 MB
  • 资源评级:
  • 更新时间: 2010/5/15 14:56:00
  • 资源来源: 会员转发
  • 资源提供: wubinwb2008 [资源集]
  • 下载情况: 本月:获取中 总计:获取中
  • 下载点数: 获取中 下载点  如何增加下载点
  •  点此下载传统下载

资源简介:

9.10研究性课题:多面体欧拉定理的发现 (一).doc
9.10研究性课题:多面体欧拉定理的发现 (二).doc
9.11球(二)?.doc
9.11球(三)?.doc
9.11球(一)?.doc
9.1平面的基本性质(二).doc
9.1平面的基本性质(三).doc
9.1平面的基本性质(一).doc
9.2空间的平行直线与异面直线(二)?.doc
9.2空间的平行直线与异面直线(一)?.doc
9.3直线与平面平行、平面与平面平行 (二).doc
9.3直线与平面平行、平面与平面平行 (一).doc
9.4直线和平面垂直 (二)?.doc
9.4直线和平面垂直 (三)?.doc
9.4直线和平面垂直 (四).doc
9.4直线和平面垂直 (一).doc
9.5空间向量及其运算(二).doc
9.5空间向量及其运算(三)?.doc
9.5空间向量及其运算(四)?.doc
9.5空间向量及其运算(五)?.doc
9.5空间向量及其运算(一)?.doc
9.6空间向量的直角坐标及其运算 (二)?.doc
9.6空间向量的直角坐标及其运算 (三).doc
9.6空间向量的直角坐标及其运算 (一)?.doc
9.7直线与平面所成的角和二面角(二)?.doc
9.7直线与平面所成的角和二面角(三)?.doc
9.7直线与平面所成的角和二面角(一).doc
9.8距离 (二).doc
9.8距离 (一)?.doc
9.9棱柱和棱锥(二)?.doc
9.9棱柱和棱锥(三)?.doc
9.9棱柱和棱锥(四)?.doc
9.9棱柱和棱锥(一)?.doc
第九章目录.txt
第九章直线平面简单几何体(B)教材分析.doc
小结与复习(二)?.doc
小结与复习(三)?.doc
小结与复习(一)?.doc

  本章共分四大节11小节,教学时间约需36课时,具体分配如下(仅供参考):
  空间的直线和平面
  9.1平面的基本性质   约3课时
  9.2空间的平行直线与异面直线    约2课时
  9.3直线与平面平行、平面与平面平行   约2课时
  9.4直线和平面垂直    约4课时
  空间向量
  9.5空间向量及其运算      约5课时
  9.6空间向量的直角坐标及其运算    约3课时
  夹角和距离
  9.7直线与平面所成的角和二面角     约3课时
  9.8距离     约2课时
  简单多面体和球
  9.9棱柱和棱锥   约4课时
  9.10研究性课题:多面体欧拉定理的发现    约2课时
  9.11球       约3课时
  小结与复习    约3课时
  一、内容与要求
  9.1节,平面的基本性质共4个知识点:平面的表示法、平面的基本性质、公理的推论、空间图形在平面上的表示方法这一小节是整章的基础通过平面基本性质及其推论的学习使学生对平面的直观认识上升到理性认识教师应该认识到培养学生的空间想象力主要是通过对图形性质的学习,使学生对图形的直观认识上升到理性认识,建立空间图形性质的正确概念,这样才能学好立体几何
  为了形成学生的空间观念,这一小节通过观察太阳(平行)光线照射物体形成影子的性质来学习直观图的画法先直观地了解平行射影的性质,这样就可正确地指导学生画空间图形
  这小节教学要求是,掌握平面的基本性质,直观了解空间图形在平面上的表示方法,会用斜二测画法画水平放置的平面图形的直观图和长方体、正方体的直观图
  9.2节共有两个知识点,平行直线、异面直线以平行公理和平面基本性质为基础进一步学习平行直线的性质,把平行公理和平行线的传递性推广到空间
       立体几何课程是初等几何教育的内容之一,是在初中平面几何学习的基础上开设的,以空间图形的性质、画法、计算以及它们的应用为研究对象,以演绎法为研究方法通过立体几何的教学,使学生的认识水平从平面图形延拓至空间图形,完成由二维空间向三维空间的转化,发展学生的空间想象能力,逻辑推理能力和分析问题、解决问题的能力
     平面的概念和平面的性质是立体几何全部理论的基础平面,是现实世界存在着的客观事物形态的数学抽象,在立体几何中是只描述而不定义的原始概念,但平面是把三维空间图形转化为二维平面图形的主要媒介,在立体几何问题平面化的过程中具有重要的桥梁作用
  “立体几何”作为一门学生刚开始学习的学科,其内容对学生来说基本上是完全陌生的,应以“讲授法’的主,引导学生观察和想象,吸引学生的注意力,
  本节共有两个知识点,平行直线、异面直线以平行公理和平面基本性质为基础进一步学习平行直线的性质,把平行公理和平行线的传递性推广到空间并引出平移概念,了解了平移的初步性质在这一节还由直线平行的性质学习异面直线及其夹角的概念
  要求学生正确掌握空间平行直线性质和异面直线及其夹角的概念,这样就为学生学习向量和空间图形的性质打下了基础
  教学过程:
  一、复习引入:
  把一张纸对折几次,为什么它们的折痕平行?
  (答:把一张长方形的纸对折两次,打开后得4个全等的矩形,每个矩形的竖边是互相平行的,再应用平行公理,可得知它们的折痕是互相平行的)
  你还能举出生活中的相关应用的例子吗?
  本节有两个知识点,直线与平面和平面与平面平行,直线与平面、平面与平面平行特征性质这也可看作平行公理和平行线传递性质的推广直线与平面、平面与平面平行判定的依据是线、线平行这些平行关系有着本质上的联系
  通过教学要求学生掌握线、面和面、面平行的判定与性质这两个平行关系是下一大节学习共面向量的基础
  前面3节主要讨论空间的平行关系,其中平行线的传递性和平行平面的性质是这三小节的重点
  教学过程:
  一、复习引入:
  1 空间两直线的位置关系
  (1)相交;(2)平行;(3)异面
  2.公理4 :平行于同一条直线的两条直线互相平行
  推理模式:.
  3.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等
  4.等角定理的推论:如果两条相交直线和另两条相交直线分别平行,那么这两条直线所成的锐角(或直角)相等.
      本节包括两个知识点:直线和平面垂直及正射影和三垂线定理空间除平移和平行射影的性质外,第二个重要性质就是空间的镜面对称直线与平面的垂直的特征性质是研究空间对称性的基础细心分析直线和平面判定定理的证明过程就可以看到,证明的过程就是由平面的轴对称转换为空间的镜面对称的过程这一小节要特别重视判定定理的教学,要向学生指出定理证明过程的本质三垂线定理是由直线和平面垂直判定定理得出的一个最重要的空间图形的性质,在传统几可学教育中这个定理占有极重要的地位,在这里,我们只重视概念的教学,减弱围绕三垂线定理的解题训练这是因为我们有更有效的向量工具处理空间的垂直问题
  这一小节的教学要求是,掌握直线和平面垂直的概念,掌握直线和平面垂直的判定定理,掌握三垂线定理及逆定理主要是理解定理的本质和直接应用
     本节,空间向量及其运算共有4个知识点:空间向量及其线性运算、共线向量与共面向量、空间向量的分解定理、两个向量的数量积这一节是全章的重点,有了第一大节空间平行概念的基础,我们就很容易把平面向量及其运算推广到空间向量由于本教材学习空间向量的主要目的是,解决一些立体几何问题,所以例习题的编排也主要是立体几何问题
  本小节首先把平面向量及其线性运算推广到空间向量学生已有了空间的线、面平行和面、面平行概念,这种推广对学生学习已无困难但仍要一步步地进行,学生要时刻牢记,现在研究的范围已由平面扩大到空间一个向量已是空间的一个平移,两个不平行向量确定的平面已不是一个平面,而是互相平行的平行平面集,要让学生在空间上一步步地验证运算法则和运算律这样做,一方面复习了平面向量、学习了空间向量,另一方面可加深学生的空间观念
  当我们把平面向量推广到空间向量后,很自然地要认识空间向量的两个最基本的子空间:共线向量和共面向量把平行向量基本定理和平面向量基本定理推广到空间然后由这两个定理推出空间直线和平面的向量表达式有了这两个表达
      本节有两个知识点:向量和点的直角坐标及向量的坐标运算、夹角和距离公式这一小节,我们在直角坐标系下,使向量运算完全坐标化去掉基底,使空间一个向量对应一个三维数组,这样使向量运算更加方便在上一小节已学习向量运算的基础上,把向量运算完全坐标化,对学生已不会感到抽象和困难在第2个知识点中,我们给出空间解析几何两个最基本的公式:夹角和距离公式在这个知识点中,作为向量坐标计算的例题,还顺便证明了直线与平面垂直的“性质定理”通过解一些立体几何的应用题,就可为学生今后进一步学习空间解析几何、高维向量和矩阵打下基础
  要求学生理解空间向量坐标的概念,掌握空间向量的坐标运算,掌握两点的距离公式掌握直线垂直于平面的性质定理 
       本节有三个知识点:直线与平面所成的角、二面角、两平面垂直的性质
  要求学生掌握直线和平面、平面和平面所成的角、距离的概念并能灵活运用勾股定理、正余弦定理和向量代数方法计算有关的角和距离了解异面直线距离的概念和计算
  在学生已初步掌握向量工具的基础上,可用向量工具解决立体几何中的一些较难的问题,一方面可进一步显示向量工具的威力,另外也为解决空间的度量问题找到了通法,减少学生学习度量问题的困难过去学生解这类问题,主要方法是构造三角形,应用勾股定理、余弦定理和正弦定理求解这种解法需要对图形进行平移、投影等转化技能,而且不同的问题需要不同的技巧实践证明,没有向量工具,学生求解这类问题比较困难有了向量运算工具,很多较难的空间计算问题,就有了统一的方法求解、但如果全用向量处理夹角相距离问题,虽有通法,但有时在解决一些较难问题时,运算量较大并需要一定的技巧,学生掌握这些技能同样会有困难所以在教材具体编写时,不是都用向量计算方法,有些直接使用勾股定理和三角能解决的问题,就不再使用向量方法了
  本节主要学习点到平面的距离,直线到平面的距离,平面到平面的距离,异面直线的距离和计算
  这一节要求学生掌握直线和平面、平面和平面的距离的概念并能灵活运用勾股定理、正余弦定理和向量代数方法计算有关的距离了解异面直线距离的概念和计算
  在学生已初步掌握向量工具的基础上,可用向量工具解决立体几何中的一些较难的问题,一方面可进一步显示向量工具的威力,另外也为解决空间的度量问题找到了通法,减少学生学习度量问题的困难过去学生解这类问题,主要方法是构造三角形,应用勾股定理、余弦定理和正弦定理求解这种解法需要对图形进行平移、投影等转化技能,而且不同的问题需要不同的技巧实践证明,没有向量工具,学生求解这类问题比较困难有了向量运算工具,很多较难的空间计算问题,就有了统一的方法求解、但如果全用向量处理夹角相距离问题,虽有通法,但有时在解决一些较难问题时,运算量较大并需要一定的技巧,学生掌握这些技能同样会有困难所以在教材具体编写时,不是都用向量计算方法,有些直接使用勾股定理和三角能解决的问题,就不再使用向量方法了  
  简单多面体和球,共分4小节简单几何体,是指最基本、最常见的几何体按照大纲的规定,有关简单几何体只讨论棱柱、棱锥、多面体和正多面体、球 由于初中几何已学过圆柱和圆锥的有关内容,台体(圆台、棱台)又可以通过从大锥体上截去小锥体而得出,为节约课时以便实现高中数学教学内容的更新,本章中的简单几何体比原《立体几何》(必修本)在内容上精简幅度较大,删去了圆柱、圆锥、圆台、棱台等,只保留了最基本的多面体(棱柱和棱锥)、正多面体的有关概念、球等
  本节有四个知识点:棱柱、棱锥、棱柱和棱锥的直观图以及正多面体的有关概念关于棱柱和棱锥的教学内容都包括有关概念、性质等内容,直观图的画法仅学习直棱柱和正棱锥的直观图
  这一节的内容,既是对简单几何体基础知识的重点讨论,又是对前面空间图形的基本性质和向量代数等相关知识的
  1 欧拉生平事迹简说:欧拉(Euler),瑞士数学家及自然科学家1707年4月15日出生于瑞士巴塞尔的一个牧师家庭,自幼受父亲的教育,13岁入读巴塞尔大学15岁大学毕业,16岁获硕士学位,1783年9月18日于俄国彼得堡去逝(详细资料附后)
  2多面体的概念:由若干个多边形围成的空间图形叫多面体;每个多边形叫多面体的面,两个面的公共边叫多面体的棱,棱和棱的公共点叫多面体的顶点,连结不在同一面上的两个顶点的线段叫多面体的对角线.
  3.凸多面体:把多面体的任一个面展成平面,如果其余的面都位于这个平面的同一侧,这样的多面体叫凸多面体.如图的多面体则不是凸多面体.
  4.凸多面体的分类:多面体至少有四个面,按照它的面数分别叫四面体、五面体、六面体等
  本节有两个知识点:球的有关概念、性质和球的体积、表面积本章通过“分割,求近似和,化为准确和”的方法,即运用“化整为零,又积零为整”的极限思想,对于球的体积和表面积公式进行了推导,这种处理方法与原《立体几何》(必修本)有较大变化教学中对这两公式的推导,只要求了解其基本思想方法即可,重点在于掌握公式本身;而不必要求学生一定要掌握公式推导的细节
  ㈠空间的直线与平面
  ⒈平面的基本性质
  ⑴三个公理及公理三的三个推论和它们的用途. ⑵斜二测画法.
  ⒉空间两条直线的位置关系:相交直线、平行直线、异面直线.
  ⑴公理四(平行线的传递性).等角定理.
  ⑵异面直线的判定:判定定理、反证法.
  ⑶异面直线所成的角:定义(求法)、范围.
  ⒊直线和平面平行于平面和平面平行
  ⑴直线与平面平行:直线和平面的位置关系、直线和平面平行的判定与性质.
  ⑵平行平面:两个平面的位置关系、两个平面平行的判定与性质.
  ⒋直线和平面垂直
  ⑴直线和平面垂直:定义、判定定理.

 点此下载传统下载搜索更多相关资源
  • 说明:“点此下载”为无刷新无重复下载提示方式;“传统下载”为打开新页面进行下载,有重复下载提示。
  • 提示:非零点资源点击后将会扣点,不确认下载请勿点击。
  • 我要评价有奖报错加入收藏下载帮助

下载说明:

  • 没有确认下载前请不要点击“点此下载”、“传统下载”,点击后将会启动下载程序并扣除相应点数。
  • 如果资源不能正常使用或下载请点击有奖报错,报错证实将补点并奖励!
  • 为确保所下资源能正常使用,请使用[WinRAR v3.8]或以上版本解压本站资源。
  • 站内部分资源并非原创,若无意中侵犯到您的权利,敬请来信联系我们。

资源评论

共有 0位用户发表了评论 查看完整内容我要评价此资源