约2660字。
《等差数列》教案
一、教学目标
1.知识与技能:通过实例,理解等差数列的概念;探索并掌握等差数列的通项公式;能在具体的问题情境中,发现数列的等差关系并能用有关知识解决相应的问题;
2. 过程与方法:让学生对日常生活中实际问题分析,引导学生通过观察,推导,归纳抽象出等差数列的概念;由学生建立等差数列模型用相关知识解决一些简单的问题,进行等差数列通项公式应用的实践操作并在操作过程中
二、教学重、难点
重点:理解等差数列的概念及其性质,探索并掌握等差数列的通项公式;
难点:概括通项公式推导过程中体现出的数学思想方法。
三、教学设想
[创设情景]
上节课我们学习了数列。在日常生活中,人口增长、教育贷款、存款利息等等这些大家以后会接触得比较多的实际计算问题,都需要用到有关数列的知识来解决。今天我们先学习一类特殊的数列。
[探索研究]
由学生观察分析并得出答案:
(放投影片)1、在现实生活中,我们经常这样数数,从0开始,每隔5数一次,可以得到数列:0,5,____,____,____,____,……
2、2000年,在澳大利亚悉尼举行的奥运会上,女子举重被正式列为比赛项目。该项目共设置了7个级别。其中较轻的4个级别体重组成数列(单位:kg):48,53,58,63。
3、水库的管理人员为了保证优质鱼类有良好的生活环境,用定期放水清理水库的杂鱼。如果一个水库的水位为18cm,自然放水每天水位降低2.5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m):18,15.5,13,10.5,8,5.5
4、我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本金计算下一期的利息。按照单利计算本利和的公式是:本利和=本金×(1+利率×寸期).例如,按活期存入10 000元钱,年利率是0.72%。那么按照单利,5年内各年末的本利和分别是:
时间 年初本金(元) 年末本利和(元)
第1年 10 000 10 072
第2年 10 000 10 144
第3年 10 000 10 216
第4年 10 000 10 288
第5年 10 000 10 360
各年末的本利和(单位:元)组成了数列:10 072,10 144,10 216, 10 288,10 360。
思考:同学们观察一下上面的这四个数列:0,5,10,15,20,…… ①
48,53,58,63 ②
18,15.5,13,10.5,8,5.5 ③
10 072,10 144,10 216, 10 288,10 360 ④
看这些数列有什么共同特点呢?引导学生观察相邻两项间的关系,
由学生归纳和概括出,以上四个数列从第2项起,每一项与前一项的差都等于同一个常数(即:每个都具有相邻两项差为同一个常数的特点)。
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源