约1340字。
《有理数的混合运算》教案
虹桥实验中学 臧国志
教材分析:为体现新课标的要求,减少运算的繁琐,增加学生探究创新能力的培养,混合计算的步骤锐减,增加学生喜闻乐见的“二十四”点游戏。
教学目标;
[知识与技能]
1、掌握有理数混合运算法则,并能进行有理数的混合运算的计算。
2、经历“二十四”点游戏,培养学生的探究能力
教学重点:有理数混合运算法则。
教学难点:培养探索思维方式。
教学流程:运算法则→混合运算→探索思维。
教学活动过程设计:
一、生活应用引入:
[师]我们已学过哪种运算?
[生] 乘方、乘、除、加、减五种。
[师]这五种运算顺序怎样呢?请看实例:
一圆形花坛的半径为3m,中间雕塑的底面是边长为1.2m的正方形。你能用算式表示该花坛的关际种花面积吗?这个算式有哪几种运算?应怎样计算?这个花坛的实际种化面积是多少?
[生]列出算式3.14×32-1.22
包括:乘方、乘、减三种运算
[师]原式=3.14×9-1.44
=28.26-1.44=26.82(m2)
[师]请同学们说说有理数的混合运算的法则
(生相互补充、师归纳)
一般地, 有理数混合运算的法则是:
先算乘方,再算乘除,最后算加减。如有括号,先进行括号里的运算。
二、混合运算举例。
1. (生口答)下列计算错在哪里?应如何改正?
(1)74-22÷70=70÷70=1
(2)(-112 )2-23=114 -6 = -434
(3)23-6÷3×13 =6-6÷1=0
2、例1计算:
(1)(-6)2×(23 - 12 )-23; (2)56 ÷23 - 13 ×(-6)2+32
解:(1)(-6)2×(23 -12 )-23=36×16 -8=6-8=-2。
(2)56 ÷23-13 ×(-6)2+32
=56 ×32 -13 ×36+9。
=54 -12+9=-74
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源